Sprecher
Beschreibung
In ARTEMIS[1] laser-microwave double-resonance spectroscopy[2] will be used to measure the intrinsic magnetic moments of both electrons and nuclei in heavy, highly charged ions (HCIs). The extreme field strength of the nearby nucleus in such heavy HCIs enhances the effect of bound-state QED and nuclear interactions with the orbiting electron. Figure 1 shows the level scheme for hydrogen-like bismuth and the transitions used for the measurement.
The ARTEMIS Penning trap (Figure 2) has two sections: the spectroscopy trap (ST) and creation trap (CT). The ST uses a half-open design for optical and ion access[3]. On the closed side spectroscopic access is provided by a transparent endcap electrode with a conductive indium-tin-oxide coating. This provides
[1] Ebrahimi, M. S. et al. Resistive Cooling of Highly Charged Ions in a Penning Trap to a Fluidlike State. Physical Review A 98, no. 2 (2018). doi: 10.1103/physreva.98.023423.
[2] Quint, W. et al. Laser-microwave double-resonance technique for g-factor measurements in highly charged ions. Physical Review A 78, no. 3 (2008). doi: 10.1103/physreva.78.032517
[3] von Lindenfels, D. et al. Hyperfine Interact (2014) 227(197). doi: 10.1007/s10751-013-0961-z
[4] Resistive cooling of highly charged ions in a Penning trap to a fluid-like state, M.S. Ebrahimi, Z. Guo, M. Wiesel, G. Birkl, W. Quint and M. Vogel, Phys. Rev. A 98, 023423 (2018)