2-4 May 2022
Harnack-Haus & Zoom
Europe/Berlin timezone

Ultraviolet Spectroscopy of the Actinium-229 beta decay: On the way to the first observation of 229mTh’s radiative decay?

3 May 2022, 11:45
15m
Hahn-Hörsaal & 640 2973 0764 (Harnack-Haus & Zoom)

Hahn-Hörsaal & 640 2973 0764

Harnack-Haus & Zoom

Ihnestrasse 16-20 14195 Berlin-Dahlem Germany

Speaker

Sandro Kraemer (KU Leuven, Instituut voor Kern- en Stralingsfysica)

Description

A unique feature of thorium-229 is its isomer with an exceptionally low excitation energy, proposed as a candidate for future optical clocks [1]. The small decay width is expected to outperform the accuracy of current state-of-the-art atomic clocks by an order of magnitude [2]. The current best values of the excitation energy are 8.28(17)eV and 8.10(17)eV [3,4]. These were determined using two different measurement techniques whereby the isomer is populated in the alpha decay of uranium-233. The development of an optical clock requires however knowledge of the excitation energy by at least an order of magnitude more precise. Additionally, spectroscopic experiments searching for a direct signature of the radiative decay have to-date been unsuccessful, partially due to the background induced in the preceding alpha decay.

An alternative approach using the beta decay of actinium-229 is studied as a novel method to populate the isomer with high efficiency and in low background conditions [5]. Produced online at the ISOLDE facility at CERN, actinium is implanted into a large-bandgap crystal in specific lattice positions, suppressing the electron conversion decay channel of the isomer. A favorable feeding pattern significantly increases the population of the isomer compared to uranium-233 and the lower energy deposit of the beta- compared to the alpha-decay results in a reduced luminescence background.

In this contribution, a dedicated setup developed at KU Leuven for a vacuum-ultraviolet study of an actinium-229 beam implanted into a large-bandgap crystal is presented and preliminary results from a recent experimental campaign at ISOLDE showing a footprint of the radiative decay of low-energy thorium isomer are discussed.

[1] E. Peik et al., Europhys. Lett. 61, 2 (2003)
[2] C. Campbell et al., PRL 108, 120802 (2012)
[3] B. Seiferle et al., Nature 573, 243-246 (2019)
[4] T. Sikorsky et al., PRL 125, 142503 (2020)
[5] M. Verlinde et al., Physical Review C, 100 (2), 024315-024315

Primary authors

Sandro Kraemer (KU Leuven, Instituut voor Kern- en Stralingsfysica) Michail Athanasakis (CERN) Silvia Bara (KU Leuven, Instituut voor Kern- en Stralingsfysica) Kjeld Beeks (TU Wien, Atominstitut) Premaditya Chhetri (KU Leuven, Instituut voor Kern- en Stralingsfysica) Arno Claessens (KU Leuven, Instituut voor Kern- en Stralingsfysica) Guilherme Correia (CERN) Lino Da Costa Pereira (KU Leuven, Quantum Solid State Physics) Hilde De Witte (KU Leuven, Instituut voor Kern- en Stralingsfysica) Rafael Ferrer (KU Leuven, Instituut voor Kern- en Stralingsfysica) Sarina Geldhof (KU Leuven, Instituut voor Kern- en Stralingsfysica) Niyusha Hosseini (TU Wien, Atominstitut) Mark Huyse (KU Leuven, Instituut voor Kern- en Stralingsfysica) Yuri Kudrayavtsev (KU Leuven, Instituut voor Kern- en Stralingsfysica) Mustapha Laatiaoui (Helmholtz Inistut Mainz) Razvan Lica (CERN) Goele Maghiels (KU Leuven, Quantum Solid State Physics) Janni Moens (KU Leuven, Quantum Solid State Physics) Sebastian Raeder (GSI) Thorsten Schumm (TU Wien, Atominstitut) Simon Sels (KU Leuven, Instituut voor Kern- en Stralingsfysica) Peter Thirolf (Ludwigs-Maximilian Universität) Malven Tunhuma (KU Leuven, Quantum Solid State Physics) Paul Van Den Bergh (KU Leuven, Instituut voor Kern- en Stralingsfysica) Piet Van Duppen (KU Leuven, Instituut voor Kern- en Stralingsfysica) André Vantomme (KU Leuven, Quantum Solid State Physics) Renan Villareal (KU Leuven, Quatum Solid State Physics) Ulrich Wahl (ULisboa)

Presentation Materials

There are no materials yet.