26 January 2020 to 1 February 2020
Hirschegg/Austria
Europe/Berlin timezone

Proton-11Boron Fusion Revisited

29 Jan 2020, 17:55
5m
Hirschegg/Austria

Hirschegg/Austria

Waldemar-Petersen-Haus Oberseitestraße 38 A-6992 Hirschegg/Kleinwalsertal

Speaker

Jianhua Feng (Xi’an Jiaotong University)

Description

The easiest fusion reaction to achieve energy gain is D+T→α+n However, this reaction has the disadvantages of releasing neutrons with energy approximately 14 MeV and tritium is an unstable isotope of hydrogen One of the most promising fusion reactions, which is p+𝐵11, has been gaining considerable attention of researchers for its negligible radioactivity Unfortunately, the existing literature shows a discrepancy in measured cross section At present, we studied this reaction by measuring the cross section of the reaction The experiment was conducted at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences The cross section for the 𝐵11(p,α)αα reaction has been measured using proton beams of energies from 500 keV to 1 35 MeV The proton beams were provided by a 4 MV electrostatic accelerator and bombarded on a boron target of 400μ g/cm2 thickness The α particles are detected at 15︒and 165︒ in the lab frame. References [1] W.M. Nevins and R. Swain, The thermonuclear fusion rate coefficient for pcoefficient for p coefficient for pcoefficient for p coefficient for p coefficient for p coefficient for pcoefficient for p-11 B reactions, B reactions, B reactions, B reactions, B reactions, B reactions, B reactions, J. Fusion Energy. J. Fusion Energy. J. Fusion Energy. J. Fusion Energy. J. Fusion Energy. J. Fusion Energy. J. Fusion Energy. J. Fusion Energy. 17 , 25 (2000). , 25 (2000). , 25 (2000). [2] M H Sikora, H R Weller, A New Evaluation of the 11B (p,α) αα Reaction Rates, J Fusion Energy 35, 538 (2016)

Primary author

Jianhua Feng (Xi’an Jiaotong University)

Presentation Materials

There are no materials yet.