Conveners
Wednesday morning 2
- Wilton Catford ()
The neutron-deficient calcium isotopes have attracted considerable attention recently. Present studies are divided over the amount of proton pf-shell occupancy, ranging from an intact $Z=20$ shell closure [1] to a considerable weakening already in the vicinity of doubly-magic $^{40}$Ca [2,3].
Two-neutron removal, a direct reaction sensitive to the single-particle configurations and...
Neutron-rich Ca isotopes towards neutron number N = 34 are pivotal for exploring the evolution of the fp-shell orbitals [1]. Beyond the N = 28 shell gap at 48Ca, new magic numbers at N = 32 and 34 were established through spectroscopy of low-lying states [2] and mass measurements [3]. Most recently, the spatial extension of the 1f7/2 and 2p3/2 neutron orbitals was determined via a one-neutron...
The direct reaction theory widely used to study single-particle spectroscopic strength in nucleon transfer experiments is based on a Hamiltonian with two-nucleon interactions only. We point out that in reactions where three-body effects are important, for example, such as $(d,p)$ and $(p,2p)$, an additional three-body force arises due to three-nucleon ($3N$) interaction between nucleons...