A platform for observing phase-transitions and measuring temperature of ion-heated samples

30.01.2026, 11:20
20m
Darmstädter Haus

Darmstädter Haus

Oberseitestr. 38 D- 87568 Hirschegg

Sprecher

Julian Lütgert (Universität Rostock Physik(URO-PH))

Beschreibung

The graphitization-threshold of diamond is of significant interest for nanodiamond synthesis from laser-shocked plastics, for particle detectors, and for the application in diamond anvil cells.
We report on experiments conducted at the HHT facility (GSI), in which a monocrystalline diamond target was volumetrically heated using a uranium ion beam. The PHELIX laser enabled measurements of X-ray Thomson scattering (XRTS) and X-ray diffraction (XRD) from the heated sample.

By comparison to density functional theory molecular dynamics simulations, the increase of diffuse elastic scattering can be leveraged to asses the sample's bulk temperature. We show that this method provides good agreement with the expected heating up to $\sim 2000\mathrm{K}$. Above this threshold, a rapid increase in the elastic scattering intensity is observed, which cannot be attributed to increased lattice movement alone. Instead, the data suggest a fundamental change in the target's integrity. Although macroscopic fracture is clearly evident, we argue that it is not sufficient to account for the observed signal. Rather, a thermally driven graphitization process provides the best explanation for the measurement.

Building on these findings, we outline the next steps in the experimental campaign, substituting the carbon targets by silicon. As heating is increased for comparable ion numbers while the temperature of the phase transition is reduced, we do not rely on the Bragg peak for triggering the phase transition, resulting in a more homogeneous probing area. This allows constraining temperature not only by XRTS, but also from the thermal expansion visible in the spatially resolved XRD. By varying probing time and heating, we seek to obtain insight into the super-heating dynamics of the material.

Autor

Julian Lütgert (Universität Rostock Physik(URO-PH))

Co-Autoren

Philipp Hesselbach (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Armin Bergermann (SLAC National Accelerator Laboratory, Stanford, USA.) Argha Roy (University of Rostock, Germany.) Maximilian Schörner (University of Rostock, Germany.) Vincent Bagnoud (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Benjamin Heuser (University of Rostock, Germany.) Björn Lindqvist (University of Rostock, Germany.) Ronald Redmer (University of Rostock, Germany.) David Riley (Queen’s University Belfast, UK.) Gabriel Schaumann (TU Darmstadt, Germany.) Alexey Sokolov (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Dmitry Varentsov (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Leonard Wegert (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Yang Yang (State Key Laboratory of Ultrafast Optical Science and Technology, Xi’an, China.) Bernhard Zielbauer (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Zsuzsanna Major (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Paul Neumayer (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.) Dominik Kraus (University of Rostock, Germany.)

Präsentationsmaterialien

Es gibt derzeit keine Materialien.