Fission in R-Process Calculations and the Position of the Third Peak

Marius Eichler Dept. of Physics University of Basel

in collaboration with:

F.-K. Thielemann (Univ. Basel)

C. Winteler (FHNW Basel)

S. Rosswog (Univ. Stockholm)

I. V. Panov (ITEP Moscow)

G. Martinez-Pinedo (TU Darmstadt, GSI)

O. Korobkin (Univ. Stockholm)

A. Arcones (TU Darmstadt, GSI)

U N I B A S E L

The R-Process

- $\tau_{(n,\gamma)} << \tau_{\beta}$
- path runs through very neutron-rich part of nuclear chart \rightarrow still many uncertainties in nuclear properties

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Robustness of the (strong) R-Process

- CS 22892-052: Sneden et al. (2003)
- HD 115444: Westin et al. (2000)
- BD+17°324817: Cowan et al. (2002)
- * CS 31082-001: Hill et al. (2002)
- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Neutron Star Mergers as R-Process Sites

Korobkin et al. (2012)

Fission in R-Process Calculations and the Position of the Third Peak

Fission in the R-Process

at the end of the r-process path nuclei become unstable and undergo fission

→ if the neutron density is still high enough, the r-process continues with the fission products as new seed nuclei

fission probability of heavy nuclei and fission fragment distribution shape the r-process reaction path and have an effect on the final abundances

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Fission Cycles in Neutron Star Mergers

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Fission Fragment Distribution Models

GSI Darmstadt, Dec 16 2013

University of Basel

and the Position of the Third Peak

R-Process in Neutron Star Mergers

- trajectories from a neutron star merger with two 1.4 $\rm M_{\odot}$ neutron stars (Rosswog, Piran & Nakar, 2013; Korobkin et al., 2012)
- trajectories include "interaction" as well as "tidal" components ($0.03 \le Y_e \le 0.05$)
- Reaclib, FRDM
- difference between fission fragment distribution models mainly around and after 2nd peak
- 3rd peak shifted to the right for all models

solar r-abundances: Sneden et al. 2008

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

The Position of the Third Peak

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

β -Decays in the R-Process

recent study of β -decay half-lives of r-process nuclei around N = 126 has shown that FRDM predictions might be off by a factor of more than 20 (Domingo-Pardo et al., 2013)

here: (artificial) acceleration of β -decays with subsequent neutron emission of heaviest elements (Z > 80) by a factor of 10

averaged timescales of neutron captures, β-decays, neutron production and photodissociations

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Comparison at $\tau_{(n,y)} = \tau_{\beta}$

- snapshots at $\tau_{(n,y)} = \tau_{\beta}$ (t = 1.34 and t = 1.16, respectively)
- abundances of A < 200 nuclei similar
- large differences in abundances of heaviest nuclei and neutron density

Marius Eichler University of Basel

Fission in R-Process Calculations and the Position of the Third Peak

The Position of the 3rd Peak (NSM)

- fission neutrons from the last fission cycle enforce neutron captures
- affects mainly third peak and rare earths, second peak consists of neutron-rich fission fragments

- β-decays with neutron emission of Z > 80 nuclei accelerated by a factor of 10
- FRDM
- ABLA07

Fission in R-Process Calculations and the Position of the Third Peak

Matter Composition at Freeze-out (NSM)

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Matter Composition at Freeze-out (NSM)

original

fast β-rates

Marius Eichler University of Basel

Fission in R-Process Calculations and the Position of the Third Peak

Conclusions

- the choice of the fission fragment distribution model has a major effect on the final abundances in NSM calculations, in particular the second peak
- in our NSM calculations, the 3rd peak is shifted towards heavier nuclei due to neutron captures after the r-process freeze-out
 - fission neutrons from last fission cycle are main culprits
 - time of r-process freeze-out is important
- in an earlier freeze-out, photodissociations can (partially) counter neutron captures, because temperature is higher
- unique problem of the FRDM?

R-Process in Jets of MHD Supernovae

- magneto-hydrodynamically driven supernova of a 15 $\rm M_{\odot}$ star, ejects matter in two neutron-rich jets
- trajectories from Winteler et al. 2012
- $\bullet \quad 0.15 \leq Y_e \leq 0.35$
- FRDM
- only one fission cycle \rightarrow mainly 2nd peak affected

Fission in R-Process Calculations and the Position of the Third Peak

Our Network: Winnet

- includes around 6000 nuclei (7700 for ETFSI calculations)
- reaclib rates
- NSE while $T \ge 8 GK$
- Timmes et al. (1999) EoS
- thermonuclear heating implemented by O. Korobkin
- sparse matrix solver: PARDISO

Matter Composition at Freeze-out (Jet)

Marius Eichler University of Basel

Fission in R-Process Calculations and the Position of the Third Peak

Fission Fragment Distribution Models

Marius Eichler University of Basel Fission in R-Process Calculations and the Position of the Third Peak

Fission Fragment Distribution Models

²⁸²Cm C. Winteler 10 10¹ • [% 10¹ ₄[▼] 10⁰ P_A [%] P_A [%] 10⁰ 10⁰ 10 10 100 140 160 80 100 120 140 80 120 160 10-²⁸² Cm 70 70 004 54 65 65 60 60 52 55 55 50 50 50 N 48 N Ν 45 45 46 40 40 44 35 35 42 30 30 25L 70 25L 70 40 L 110 140 150 160 80 90 100 110 120 130 140 150 160 80 90 100 110 120 130 140 150 160 120 130 1 Α А А Panov et al. 2001 (red) Panov et al. 2008 ABLA07 (Kelic) Kodama & Takahashi 1975 (blue)

Fission in R-Process Calculations and the Position of the Third Peak