Description
Stellar spectra carry a wealth of information, and depending on their resolution we can extract e.g. the stellar ages, chemical composition, radial velocities, as well as the stellar parameters. By observing a large sample of different stars with high-resolution spectrographs, we can investigate the chemical evolution, of all elements detectable, from lithium to uranium. Furthermore, knowing the complete abundance pattern of the star enables a comparison with model predictions, which in turn will provide information on the formation site and process of the detected elements.
In this way stellar abundances are chemical tracers. Hence, they can guide our understanding of nuclear processes, and thereby link nuclear physics (e.g. reaction rates), through astrophysics theory (such as yield predictions) to astronomy (chemical evolution and stellar abundances).
In this talk I will outline how stellar abundances are derived and used in a chemical evolution scheme. The main focus is on the heavy elements (Sr, Y, Zr, Mo, Pd, Ag, Ba, Nd, and Eu), and how these can be used as tracers of their formation processes.