
27. Juli 2012

M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

Time based simulation
Workshop in Torino 25.07.2012

| Tobias Stockmanns

27. Juli 2012 Folie 2 Tobias Stockmanns

Event Mixing (Mohammad’s work)

Back-

ground

Signal

1

Signal

2

MC Files:

Digiti

zation

• MC file does not know

anything about time

structure

• Time structure is

calculated in Digitization

stage

• Many different signal

files can be added to one

background file

• Where the data is

coming from is stored in

EventHeader

• No overlap (pileup) of

events

• See presentation of

Mohammad (last EVO

Meeting)

• Not topic of this

workshop

Event 0: from BG

 with time 50.3

Event 1: from BG

 with time 72.4

………………………………….

Event 102: from Signal 1

 with time 10230.1

…

27. Juli 2012 Folie 3 Tobias Stockmanns

How do events overlap?

• Problem: In the current version of the software each event

can be treated completely independent of each other and

time between events does not play a role.

This is not the reality in experiments:

• Sensor elements are still blocked from previous hits

• Electronic is still busy

• Hits to close in time cannot be distinguished

• …

• Special problem for PANDA:

• Continuous beam with Poisson statistics  many events

with short time between them

• No hardware trigger

27. Juli 2012 Folie 4 Tobias Stockmanns

Event Structure and Detector Response

SciTil

EMC

MVD

STT

.

.

.

time ev 1 ev 2 ev 3

= detector hits from different events

27. Juli 2012 Folie 5 Tobias Stockmanns

Event Structure and Detector Response

STT

.

.

.

time ev 1 ev 2 ev 3

= detector hits from different events

27. Juli 2012 Folie 6 Tobias Stockmanns

Event Structure and Detector Response

STT

time ev 1 ev 2 ev 3

= detector hits from different events

Wanted data structure

27. Juli 2012 Folie 7 Tobias Stockmanns

Event Structure and Detector Response

STT

.

.

.

time ev 1 ev 2 ev 3

= detector hits from different events

Event 1

Event 2

Event 3

Wanted data structure

Data structure in Tree

27. Juli 2012 Folie 9 Tobias Stockmanns

Times to take into account

EventTime [ns]

EventTime

27. Juli 2012 Folie 10 Tobias Stockmanns

Times to take into account

EventTime

27. Juli 2012 Folie 11 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

EventTime

27. Juli 2012 Folie 12 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

EventTime

TimeOfFlight

27. Juli 2012 Folie 13 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

Electronics

U

Uthr

t TimeStamp

EventTime

TimeOfFlight

TimeStamp

27. Juli 2012 Folie 14 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

Electronics

U

Uthr

t TimeStamp is

charge dependent

EventTime

TimeOfFlight

TimeStamp

Signal with different charge

27. Juli 2012 Folie 15 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

Electronics

U

Uthr

t

EventTime

TimeOfFlight

TimeStamp

27. Juli 2012 Folie 16 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

Electronics

U

Uthr

t

2nd hit in same

detector elemet EventTime

TimeOfFlight

TimeStamp

27. Juli 2012 Folie 17 Tobias Stockmanns

Times to take into account

S

e

n

s

o

r

Electronics

U

Uthr

t

EventTime

TimeOfFlight

TimeStamp

Start/ActiveTime

Active Time Start Time

27. Juli 2012 Folie 18 Tobias Stockmanns

Necessary Times

• 4 times necessary:

• Event Time

• Assigned to Events in digitization if
fRun->SetEventMeanTime(Double_t) is set in the

digi macro

• Value can be accessed in tasks via:
FairRootManager::Instance()->

GetEventTime()

27. Juli 2012 Folie 19 Tobias Stockmanns

Necessary Times

• 4 times necessary:

• Event Time

 Time Of Flight:

• Automatically stored in the MC points of each detector

27. Juli 2012 Folie 20 Tobias Stockmanns

Necessary Times

• 4 times necessary:

• Event Time

 Time Of Flight

 Time Stamp:

• Time assigned to each detector hit (MANDATORY for

PANDA!)

• Absolute time! (includes Event Time, ToF , Electornics)

• Resolution and offset depends on individuall detector

27. Juli 2012 Folie 21 Tobias Stockmanns

Necessary Times

• 4 times necessary:

• Event Time

 Time Of Flight

 Time Stamp

 Start/Active Time:

• Time window an event can influence any other event

happening in the same detector element

• Strongly detector dependent

• What happens if a second hit happend during the active

time of a previous it is also strongly detector dependent

(hit lost, new hit modified, old hit modified, new hits

created, …)

• Absolute time!

27. Juli 2012 Folie 22 Tobias Stockmanns

FairWriteoutBuffer

• Special buffer to store detector data between events

• You give the data you want to store an absolute time

window this data is active in your detector and can

influence later events.

• If the same detector element is hit a second time the data is

modified.

• This is an abstract base class where you have to inherit

from

• Let’s start implementing it

27. Juli 2012 Folie 23 Tobias Stockmanns

STORING THE DATA

27. Juli 2012 Folie 24 Tobias Stockmanns

STEP 0

• Commit your changes on your torinoDetector into the SVN

• Switch to:

https://subversion.gsi.de/fairroot/pandaroot/development/tstoc

kmanns/Torino/version4b/torinoDetector and

https://subversion.gsi.de/fairroot/pandaroot/development/tstoc

kmanns/Torino/version4b/macro/torinoDetector

• Compile the code.

• Have a look at the new classes PndTorinoDetectorDigiTask

and PndTorinoDetectorRecoTask.

What are they doing?

• Run the macros run_sim.C, run_digi.C, run_reco.C

• Look at the results. Are they what you expect?

https://subversion.gsi.de/fairroot/pandaroot/development/tstockmanns/Torino/version4b/torinoDetector
https://subversion.gsi.de/fairroot/pandaroot/development/tstockmanns/Torino/version4b/torinoDetector

27. Juli 2012 Folie 25 Tobias Stockmanns

STEP 1

• Check the data object you want to store:

• Does it derive form FairTimeStamp ?

• Does it have an operator<< ?

• Does it have an bool operator< (const

yourClass& name) const ?

• Does it have an equal(FairTimeStamp*) method?

• The equal method should return true if two identical

detector elements are compared (e.g. the same pixel,

pad, strip, straw, …)

• It should not check if the data in the element is

identical as well

 An example can be found in PndSdsDigiPixel

27. Juli 2012 Folie 26 Tobias Stockmanns

STEP 2

• Derive your own buffer class from FairWriteoutBuffer

• In the class header you have to add:
• std::map<yourDataClass, double> fData_map;

• yourWriteoutBuffer::yourWriteoutBuffer(TString branchName, TString folderName, Bool_t

persistance): FairWriteoutBuffer(branchName, “yourDataClass", folderName, persistance)

• Implement the pure virtual methods:
• void AddNewDataToTClonesArray(FairTimeStamp* data)

{

 FairRootManager* ioman = FairRootManager::Instance();

 TClonesArray* myArray = ioman-> GetTClonesArray(fBranchName);

 new ((*myArray)[myArray->GetEntries()]) yourclass(*(yourclass*)(data));

}

• Double FindTimeForData(FairTimeStamp* data)

{

 std::map<yourclass, double>::itertor it;

 yourclass myData = *(yourclass)data;

 it = fData_map.find(myData);

 if (it == fData_map.end())

 return -1;

 else return it->second;

}

27. Juli 2012 Folie 27 Tobias Stockmanns

STEP 2b

• Implement the pure virtual methods:
• void FillDataMap(FairTimeStamp* data, double activeTime)

{

 yourclass myData = *(yourclass*)data;

 fData_Map[myData] = activeTime;

}

• void EraseDataFromDataMap(FairTimeStamp* data)

{

 yourclass myData = *(yourclass*)data;

 if (fData_map.find(myData) != fData_map.end())

 fData_map.erase(fData_map.find(myData));

}

27. Juli 2012 Folie 28 Tobias Stockmanns

Modify

• Overwrite Modify(…) if you want to have a different

PileUp behavior (optional)

• Modify(…)is called if data should be written into the

buffer of an element which already exists in the buffer

(e.g. same pixel hit a second time)

• The standard behavior is that the new data is just

ignored

• Input is the old data already in the buffer and the new

data which goes into the buffer

• Output is a vector of data which will be stored in the

buffer plus the new active time of the data

27. Juli 2012 Folie 29 Tobias Stockmanns

STEP 3

• Open your digi task:

• Add to the header file:

• YourWriteoutBuffer* yourBufferName;

• void RunTimeBased(){fTimeOrderedDigi = kTRUE;}

• Bool_t fTimeOrderedDigi;

• Replace in Init() the creation of the TClonesArray for your data

class by::

yourBufferName = new YourWriteoutBuffer(OutputBranchName, FolderName,

Persistance);

yourBufferName = (YourWriteoutBuffer*)ioman->

 RegisterWriteoutBuffer(OutputBranchName, youBufferName);

yourBufferName->ActivateBuffering(fTimeOrderedDigi);

27. Juli 2012 Folie 30 Tobias Stockmanns

STEP 3

• Replace in Exec() the filling of the TClonesArray of your

data object by:

• The writeout buffer replaces the usual TClonesArray used

to store the data

• If the variable fTimeOrderedDigi is set to kFALSE the

behaviour of the buffer is identical to the standard

TClonesArray storage of data

yourBufferName->FillNewData(yourData, theAbsoluteStartTimeOfTheData,

theAbsoluteActiveTimeOfTheData);

27. Juli 2012 Folie 31 Tobias Stockmanns

STEP 4

• Add to your CMakeLists.txt and …LinkDef.h file the new classes

• Make sure that you store a TimeStamp including error with your

data!

• Now add in your digi macro the line
fRun->SetEventMeanTime(yourValue);

to assign a time to the events.

• To use now the buffer you just need to set in your digi macro
yourTask->RunTimeBased();

• This data has to go to a root file before you can continue

analysing the digitized data!

• That’s it.

27. Juli 2012 Folie 32 Tobias Stockmanns

STEP 5

• Compile it, run it, test it

• If you look at the output data you should see that the digis

are not any longer stored in the same entry of the branch as

the MC data but at later entries.

• You should have one entry more in the digi file as in the MC

file

27. Juli 2012 Folie 33 Tobias Stockmanns

SORTING THE DATA

27. Juli 2012 Folie 34 Tobias Stockmanns

Sorting the data

• It is essential for the later extraction of the data that it is

sorted by its time stamp

• A base class for the sorter (FairRingSorter) and a base

class for a sorter task (FairRingSorterTask) are

already implemented in the software

• To use them you have to derive your own sorter classes

from them and overwrite some methods

27. Juli 2012 Folie 35 Tobias Stockmanns

Technical implementation – Ring Sorter

0-Element Pointer

Number of storage cells given by

the spread of the time stamps

within the data stream

Width of one storage cell given by

time resolution of detector
Storage Pointer

position calculated

numerically from time stamp

If a storage position is calculated which would override old data, the

old data is saved to disk and the storage cell is freed

27. Juli 2012 Folie 36 Tobias Stockmanns

STEP 6

• For the FairRingSorter only the method
CreateElement() has to be overwritten

• This method creates a new element of the object which was

passed by a FairTimeStamp pointer to the method

• Here is an example:

FairTimeStamp*

PndSdsDigiPixelRingSorter::CreateElement(FairTimeStamp* data) {

 return new PndSdsDigiPixel(*(PndSdsDigiPixel*)data);

}

27. Juli 2012 Folie 37 Tobias Stockmanns

STEP 7

• For the FairRingSorterTask two methods have to be
overwritten: InitSorter and AddNewDataToTClonesArray

• Here is an example of InitSorter:

• And for AddNewDataToTClonesArray:

FairRingSorter* PndSdsDigiPixelSorterTask::InitSorter

 (Int_t numberOfCells, Double_t widthOfCells)

{

 return new PndSdsDigiPixelRingSorter(numberOfCells, widthOfCells);

}

void PndSdsDigiPixelSorterTask::AddNewDataToTClonesArray

 (FairTimeStamp* data)

{

 FairRootManager* ioman = FairRootManager::Instance();

 TClonesArray* myArray = ioman->GetTClonesArray (fOutputBranch);

 new ((*myArray)[myArray->GetEntries()])PndSdsDigiPixel

 (*(PndSdsDigiPixel*)(data));

}

27. Juli 2012 Folie 38 Tobias Stockmanns

Test it

• Compile it.

• Add to your digi task the new sorter task after your

digitization task.

• Run your digi macro.

• Compare the sorted digis with the unsorted digis. In which

entry of the Tree are they stored?

• What happens if you change the size of the RingSorter?

27. Juli 2012 Folie 39 Tobias Stockmanns

READING BACK THE DATA

27. Juli 2012 Folie 40 Tobias Stockmanns

Reading back data

• Reading back data is done via the FairRootManager

• Two different methods exists

FairRootManager::GetData(BranchName, Functor, Parameter);

FairRootManager::GetData(BranchName, StartFunctor, StartParam.,

 StopFunctor, StopParam.);

• GetData with one functor/parameter runs always forward in time

• Data is only read once

• GetData with two sets of functor/parameter is able to get data

within a time interval

• Data can be extracted many times

• Works only with special functors  next page

27. Juli 2012 Folie 41 Tobias Stockmanns

What is a Functor?

• A (binary)functor is a class with an operator() which

takes two parameters as an input and has one output.

• In our case the parameters are FairTimeStamp*,

double as input and bool as output.

• The functor is true if it gets data which does not fit into the

selection criterion

• In this way you can define your own data selectors

• Existing examples:

• StopTime: Returns all data with a TimeStamp less than

the given parameter

• TimeGap: Returns all data before a time gap larger than

the given parameter

• For the GetData-Method with two functors the first has to

be the StopTime - functor

27. Juli 2012 Folie 42 Tobias Stockmanns

STEP 8

• Add in your reco task header:
#include “FairTSBufferFunctional.h“ and

BinaryFunctor* fFunctor; //!

• In Init() of your task cxx file add:

 fFunctor = new StopTime();

• In Exec() of Task:

 if (FairRunAna::Instance()->IsTimeStamp()){

 fDigiArray = FairRootManager::Instance()->

 GetData(yourDigiBranchName, fFunctor,

 FairRunManager::Instance()->GetEventTime()

 + 10);

}

27. Juli 2012 Folie 43 Tobias Stockmanns

STEP 8

• At the end of Exec() add:

• fHitarray->Sort();

• fDigiArray->Delete();

27. Juli 2012 Folie 44 Tobias Stockmanns

STEP 9

• To activate the reading back of the data via the functors you
have to add fRun->RunWithTimeStamps() in your reco

macro.

• If you leave RunWithTimeStamps() away GetData(…)

returns the data as it is stored in the entries of your digi

branch

• Run your macro.

• What happens if you set RunWithTimeStamps or leave it

away?

• What happens if you modify the functor parameters?

• Test the other functor.

27. Juli 2012 Folie 45 Tobias Stockmanns

MVD Examples

• Examples of the time ordered simulation can be found in

/macro/mvd/TimeOrderedSim

• To check that everything is working you should start a

TreeViewer and scan the TimeStamp variable of your data.

If it is randomized before your RingSorter and it is sorted

afterwards it works.

