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What is meant by ab initio in nuclear physics? 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 
 

•  Degrees of freedom: NUCLEONS 
–  Nuclei made of nucleons 
–  Interacting by nucleon-nucleon and 

three-nucleon potentials 
 

•  Ab initio 
²    All nucleons are active 
²    Exact Pauli principle 
²    Realistic inter-nucleon interactions 

²  Accurate description of  NN (and 3N) data 

²    Controllable approximations 



Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



The NN interaction from chiral EFT 

•  24 LECs fitted to the np scattering 
data and the deuteron properties 

–  Including ci LECs (i=1-4) from 
pion-nucleon Lagrangian  



Determination of NNN LECs cD and cE  
from the triton binding energy and the half life 

•  Chiral EFT: cD also in the two-nucleon 
contact vertex with an external probe 

•  Calculate  
–  Leading order GT 
–  N2LO: one-pion exchange plus contact 

•  A=3 binding energy constraint:  
     cD=-0.2±0.1 cE =-0.205±0.015 

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents
in Chiral Effective Field Theory

Doron Gazit
Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA

Sofia Quaglioni and Petr Navrátil
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

(Received 23 December 2008; published 1 September 2009)

The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.

DOI: 10.1103/PhysRevLett.103.102502 PACS numbers: 21.30."x, 21.45.Ff, 23.40."s, 27.10.+h

The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.

PRL 103, 102502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

0031-9007=09=103(10)=102502(4) 102502-1 ! 2009 The American Physical Society



Exact few-body calculations (A=3,4) 
Proton-3He elastic scattering with χEFT NN+NNN 

•  Hypherspherical-harmonics variational calculations 
–  M. Viviani, L. Girlanda, A. Kievski, L. E. Marcucci, and S. Rosati,                                   

EPJ Web Conf. 3 (2010) 05011; Few Body Syst. 54 (2013) 885 

•  Ay puzzle (almost) resolved with the chiral N3LO NN plus local chiral N2LO NNN  
–  used with the NCSM and other methods 



Quantum Monte Carlo 
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QUANTUM MONTE CARLO

Variational Monte Carlo (VMC): construct ΨV that

• Are fully antisymmetric and translationally invariant
• Have cluster structure and correct asymptotic form
• Contain non-commuting 2- & 3-body operator correlations from vij & Vijk

• Are orthogonal for multiple Jπ states
• Minimize EV = ⟨ΨV |H|ΨV ⟩ ≥ E integrating by Metropolis Monte Carlo

These are ∼ 2A
`

A
Z

´

component (270,336 for 12C) spin-isospin vectors in 3A dimensions

Green’s function Monte Carlo (GFMC): project out the exact eigenfunction

• Ψ(τ) = exp[−(H − E0)τ ]ΨV =
P

n exp[−(En − E0)τ ]anΨn ⇒ Ψ0 at large τ
• Propagation done stochastically in small time slices∆τ
• Exact ⟨H⟩ for local potentials; mixed estimates for other ⟨O⟩
• Constrained-path propagation controls fermion sign problem for A ≥ 8
• Multiple excited states for same Jπ stay orthogonal

Many tests demonstrate 1–2% accuracy for realistic ⟨H⟩

Wiringa, Pieper, Carlson, & Pandharipande, PRC 62, 014001 (2000)
Pieper, Varga, & Wiringa, PRC 66, 044310 (2002)
Pieper, Wiringa, & Carlson, PRC 70, 054325 (2004)
Pieper, NPA 751, 516c (2005)



Quantum Monte Carlo:  
Eigenenergies of light nuclei 
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• IL7: 4 parameters fit to 23 states
• 600 keV rms error, 51 states
• ~60 isobaric analogs also computed



Quantum Monte Carlo:  
Magnetic moments and transitions light nuclei 
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PHYSICAL REVIEW C 87, 035503 (2013)

Quantum Monte Carlo calculations of electromagnetic moments and transitions in A ! 9 nuclei
with meson-exchange currents derived from chiral effective field theory

S. Pastore,1,* Steven C. Pieper,1,† R. Schiavilla,2,3,‡ and R. B. Wiringa1,§
1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

2Theory Center, Jefferson Laboratory, Newport News, Virginia 23606, USA
3Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA

(Received 13 December 2012; revised manuscript received 28 February 2013; published 25 March 2013)

Quantum Monte Carlo calculations of electromagnetic moments and transitions are reported for A ! 9 nuclei.
The realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon potentials are used to generate the nuclear
wave functions. Contributions of two-body meson-exchange current (MEC) operators are included for magnetic
moments and M1 transitions. The MEC operators have been derived in both a standard nuclear physics approach
and a chiral effective field theory formulation with pions and nucleons including up to one-loop corrections. The
two-body MEC contributions provide significant corrections and lead to very good agreement with experiment.
Their effect is particularly pronounced in the A = 9, T = 3/2 systems, in which they provide up to ∼20%
(∼40%) of the total predicted value for the 9Li (9C) magnetic moment.

DOI: 10.1103/PhysRevC.87.035503 PACS number(s): 21.10.Ky, 02.70.Ss, 23.20.Js, 27.20.+n

I. INTRODUCTION

Quantum Monte Carlo (QMC) calculations of electroweak
transitions in A = 6, 7 nuclei were reported in Ref. [1]
and corrections for the magnetic moments (m.m.’s) and M1
transitions from two-body meson-exchange current (MEC)
operators were given in Ref. [2]. The QMC method is a
two-step process, with an initial variational Monte Carlo
(VMC) calculation to find a good trial function, followed by
a Green’s function Monte Carlo (GFMC) calculation to refine
the solution. When used with the Argonne v18 two-nucleon [3]
and Illinois-2 three-nucleon [4] potentials, the final GFMC
results reproduce the ground- and excited-state energies for
A ! 10 nuclei very well [5–8].

In the present paper, we extend these calculations to
A = 8, 9 nuclei using the improved Illinois-7 three-nucleon
potential [9]. The electromagnetic (EM) current operator
includes, in addition to the standard one-body convection and
spin-magnetization terms for individual protons and neutrons,
a two-body MEC component. The latter is constructed
within two distinct frameworks, namely the same standard
nuclear physics approach (SNPA) illustrated in Refs. [2,10],
and the chiral effective field theory (χEFT) formulation of
Refs. [11–13].

We report energies, radii, magnetic and quadrupole mo-
ments, and a number of M1 and E2 transitions. The MEC
contributions can make significant corrections to the m.m.’s
and M1 transitions, and we find general agreement between
the two formulations and with experiment. However the
χEFT formulation provides better agreement for the calculated
m.m.’s, for which both MEC models are tested. The M1
transitions are calculated only with the χEFT MEC operators,
showing improved agreement with experiment in all cases.

*pastore@anl.gov
†spieper@anl.gov
‡schiavil@jlab.org
§wiringa@anl.gov

A brief review of the QMC calculational method is given
in Sec. II. The EM current operator is discussed in Sec. III.
Results and conclusions are given in Secs. IV and V.

II. QUANTUM MONTE CARLO METHOD

We seek accurate solutions of the many-nucleon
Schrödinger equation,

H"(J π ; T , Tz) = E"(J π ; T , Tz), (1)

where "(J π ; T , Tz) is a nuclear wave function with specific
spin-parity J π , isospin T , and charge state Tz. The Hamiltonian
used here has the form,

H =
∑

i

Ki +
∑

i<j

vij +
∑

i<j<k

Vijk, (2)

where Ki is the nonrelativistic kinetic energy and vij and Vijk

are, respectively, the Argonne v18 (AV18) [3] and Illinois-7
(IL7) [9] potentials.

The VMC trial function "V (J π ; T , Tz) for a given nucleus
is constructed from products of two- and three-body correla-
tion operators acting on an antisymmetric single-particle state
of the appropriate quantum numbers. The correlation operators
are designed to reflect the influence of the interactions at short
distances, while appropriate boundary conditions are imposed
at long range [14,15]. The "V (J π ; T , Tz) has embedded
variational parameters that are adjusted to minimize the
expectation value,

EV = ⟨"V |H |"V ⟩
⟨"V |"V ⟩

" E0, (3)

which is evaluated by Metropolis Monte Carlo integration [16].
Here E0 is the exact lowest eigenvalue of H for the specified
quantum numbers. A good variational trial function can be
constructed with

|"V ⟩ = S
A∏

i<j

⎡

⎣1 + Uij +
A∑

k ̸=i,j

ŨTNI
ijk

⎤

⎦ |"J ⟩, (4)

035503-10556-2813/2013/87(3)/035503(15) ©2013 American Physical Society
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We extend Nuclear Lattice Effective Field Theory (NLEFT) to medium-mass nuclei, and present results for
the ground states of alpha nuclei from 4He to 28Si, calculated up to next-to-next-to-leading order (NNLO)
in the EFT expansion. This computational advance is made possible by extrapolations of lattice data using
multiple initial and final states. For our soft two-nucleon interaction, we find that the overall contribution
from multi-nucleon forces must change sign from attractive to repulsive with increasing nucleon number.
This effect is not produced by three-nucleon forces at NNLO, but it can be approximated by an effective
four-nucleon interaction. We discuss the convergence of the EFT expansion and the broad significance of
our findings for future ab initio calculations.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Several ab initio methods are being used to study nuclear struc-
ture. These include coupled-cluster expansions [1], the no-core
shell model [2,3], the in-medium similarity renormalization group
approach [4], self-consistent Green’s functions [5], and Green’s
function Monte Carlo [6]. The use of soft chiral nuclear EFT in-
teractions has stimulated much of the recent progress in ab initio
nuclear structure calculations. By “soft” interactions, we refer to
the absence of strong repulsive forces at short distances. In this
letter, we address a central question in nuclear structure theory:
How large a nucleus can be calculated from first principles using
the framework of chiral nuclear EFT, and what are the remaining
challenges?

We address this question by using Nuclear Lattice Effective Field
Theory (NLEFT) to calculate the ground states of alpha nuclei from
4He to 28Si. NLEFT is an ab initio method where chiral nuclear EFT
is combined with Auxiliary-Field Quantum Monte Carlo (AFQMC)
lattice calculations. NLEFT differs from other ab initio methods in
that it is an unconstrained Monte Carlo calculation, which does not
require truncated basis expansions, many-body perturbation the-
ory, or any constraint on the nuclear wave function. Our NLEFT re-

* Corresponding author.
E-mail address: t.laehde@fz-juelich.de (T.A. Lähde).

sults are thus truly unbiased Monte Carlo calculations. The results
presented here form an important benchmark for ab initio calcu-
lations of larger nuclei using chiral nuclear EFT. Any deficiencies
are indicative of shortcomings in the specific nuclear interactions,
rather than of errors generated by the computational method. Such
a definitive analysis would be difficult to achieve using other meth-
ods.

The lattice formulation of chiral nuclear EFT is described in
Ref. [7], a review of lattice EFT methods can be found in Ref. [9],
and Refs. [10,11] provide a comprehensive overview of chiral nu-
clear EFT. We have recently applied NLEFT to describe the structure
of the Hoyle state [12,13] and the dependence of the triple-alpha
process on the fundamental parameters of nature [14]. These stud-
ies show that NLEFT is successful up to A ≃ 12 nucleons. In this
letter, we report the first NLEFT results for medium-mass nuclei.
We compute the ground state energies for all nuclei in the alpha
ladder up to 28Si using the lattice action established in Refs. [13,
12,15].

2. Chiral nuclear EFT for medium-mass nuclei

According to chiral nuclear EFT, our calculations are organized
in powers of a generic soft scale Q associated with factors of mo-
menta and the pion mass. We label the O(Q 0) contributions to
the nuclear Hamiltonian as leading order (LO), O(Q 2) as next-to-
leading order (NLO), and O(Q 3) as next-to-next-to-leading order

http://dx.doi.org/10.1016/j.physletb.2014.03.023
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
SCOAP3.

Ground states of alpha nuclei from 4He to 28Si 
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The Hoyle state
E.E., Krebs, Lee, Meißner, PRL 106 (11) 192501
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Coupled-Cluster Method 

Coupled Cluster - Equations

Sven Binder – TU Darmstadt – 02/2012

■ CCSD : truncate T̂ at 2p2h level, T̂ = T̂1 + T̂2
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Coupled-Cluster Approach

1

•exponential Ansatz for wave operator

|Φ0⟩T̂1 |Φ0⟩T̂1 T̂2 T̂2 |Φ0⟩T̂2 |Φ0⟩

T̂•CCSD: truncate    at the 2p2h excitation level, T̂ = T̂1 + T̂2

•effects of      clusters 
included approximately in 
ground-state calculations via 
ΛCCSD(T) or CR-CC(2,3) 
method

T3

T̂n =
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State-of-the-art: Λ-CCSD(T) with 3N interaction 
Sven Binder - TU Darmstadt - March 2013

Coupled-Cluster Approach

5

exponential Ansatz for wave
operator

•

CCSD: truncate    at the 2p2h excitation
level,

•

effects of      clusters
included approximately in
ground-state calculations
via ΛCCSD(T) or CR-
CC(2,3) method

•



Coupled-Cluster calculations  
for heavy nuclei with chiral interactions 

➡ consistent 3N interaction at N3LO, and 4N interactions  

Sven Binder - TU Darmstadt - February 2013

Heavy Nuclei from χEFT Interactions

2

• systematic overbinding indicates that there are still deficiencies 

•current chiral Hamiltonians capable of describing the experimental 
trend of binding energies
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Coupled-cluster effective interactions (CCEI) for 
the shell model 

G. R. Jansen, J. Engel, G. Hagen, P. Navratil, A. Signoracci, Phys. Rev. Lett. 113, 142502 (2014).  

•  Start from chiral NN(N3LOEM) + 
3NF(N2LO) interactions 

•  Solve for A+1 and A+2 using CC. 
Project A+1 and A+2 CC wave 
functions onto the s-d model 
space using Lee-Suzuki similarity 
transformation. 

 

•  Diagonalize the effective 
hamiltonian in the valence space.   
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In-medium SRG approach: 
Application to Oxygen isotopes 

H. Hergert - The Ohio State University - INT Workshop “Advances in Many-Body Theory: From Nuclei to Molecules”, 04/03/13

Decoupling in A-Body Space
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Similarity Renormalization Group

• evolved Hamiltonian

• flow equation:

• choose        to achieve desired behavior, e.g. decoupling of 
momentum or energy scales

• consistently evolve observables of interest

Basic Concept
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Choice of Generator

• Wegner

• White (J. Chem. Phys. 117, 7472)

• off-diagonal matrix elements are suppressed like            
(Wegner) or         (White)

• g.s. energies (           ) for both generators agree within a few 
keV 
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truncation of the many-body expansion, while the effect of
theNO2Bapproximation is found to be independent of!SRG.

For !3N ¼ 350 MeV=c we do not expect significant
induced 4N interactions [27]. As !SRG is reduced, we
capture additional repulsive 3N strength in matrix elements
with e1 þ e2 þ e3 # E3max. We also speed up the conver-
gence of the many-body expansion and reduce the error due
to the MR-IM-SRG(2) truncation, but for the resolution
scales considered here, this effect is already saturated. In
total, we find a slight artificial increase of the ground-state
energies as we lower !SRG [13].

For our standard choice !3N ¼ 400 MeV=c, effects
from omitted 4N interactions, the E3max cut, and the
many-body truncation cancel, and the !SRG dependence
of the energies in Fig. 2 is extremely weak [13]. The
omission of 4N interactions becomes the dominant source
of uncertainty as we increase!3N to 450 MeV=c, resulting
in an enhanced !SRG dependence of the ground-state ener-
gies of the heavier oxygen isotopes. This is consistent with
the even stronger !SRG dependence for!3N ¼ 500 MeV=c
observed in Refs. [23,26,27].

To assess the quality of our MR-IM-SRG(2) ground-
state energies, we compare them to results from the
IT-NCSM, which yields the exact NCSM results within
quantified uncertainties from the importance truncation
[26,32]. In the IT-NCSM calculations, we use the full
3N interaction without the NO2B approximation, and the
E3max cut is naturally compatible with the IT-NCSM
model-space truncation [13]. In Fig. 3 we show the
convergence of the oxygen ground-state energies for the
NN þ 3N-induced and NN þ 3N-full Hamiltonians as a
function of Nmax, along with exponential fits which ex-
trapolate Nmax ! 1 [26,32,33]. With the exception of 26O,
all isotopes converge well, and the uncertainties of the
threshold and model spaces truncations of the IT-NCSM
results are typically about 1 MeV. For 26O, the rate of
convergence is significantly worse, which is expected due
to the resonance nature of this ground state.

The neutron-rich oxygen isotopes are the heaviest nuclei
studied so far in the IT-NCSMwith full 3N interactions. For
26O, the computation of the complete Nmax sequence shown
in Fig. 3 requires about 200 000 CPU hours. In contrast, a
corresponding sequence of single-particle basis sizes in the
MR-IM-SRG requires only about 3000 CPU hours on a
comparable system.Overall, themethod scales polynomially
with OðN6Þ to larger basis sizes N, which makes it ideally
suited for the description ofmedium- and heavy-mass nuclei.

In Fig. 4, we compare the MR-IM-SRG(2) and
IT-NCSM ground-state energies of the oxygen isotopes, for
the NN þ 3N-induced and NN þ 3N-full Hamiltonians
with !SRG ¼ 1:88 fm&1 to experiment. For the latter, the
overall agreement between the twovery differentmany-body
approaches and experiment is striking: Except for slightly
larger deviations in 12O and 26O, we reproduce experimental
binding energies within 2–3 MeV. This is a remarkable

demonstration of the predictive power of current chiral
NN þ 3N Hamiltonians, at least for ground-state energies.
For further confirmation, we perform CC calculations with
singles and doubles (CCSD), as well as perturbative triples
[!-CCSD(T)] [15,22,34,35] for oxygen isotopes with sub-
shell closures. Using the same Hamiltonians in the NO2B
approximation, the MR-IM-SRG energies are bracketed
by the CC results, and similar to the !-CCSD(T) values,
consistentwith the closed-shell results discussed inRef. [13].
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FIG. 3 (color online). IT-NCSM ground-state energies of the
even oxygen isotopes for the NN þ 3N-induced (a) and NN þ
3N-full Hamiltonians (b) at !SRG ¼ 1:88 fm&1. Solid lines in-
dicate the energy extrapolation based on Nmax ¼ 8–12 data;
dotted lines guide the eye for smaller Nmax. Uncertainties due
to the importance truncation are smaller than the symbols used to
represent the data. All energies are obtained at optimal @".
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FIG. 4 (color online). Oxygen ground-state energies for the
NN þ 3N-induced (a) and NN þ 3N-full (b) Hamiltonian with
!3N ¼ 400 MeV=c. MR-IM-SRG(2), CCSD, and !-CCSD(T)
results are obtained at optimal @", using 15 major oscillator
shells and E3max ¼ 14. The IT-NCSM energies are extrapolated
to infinite model space. Experimental values are indicated by
black bars [28,36].
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Ab Initio Calculations of Even Oxygen Isotopes with Chiral
Two-Plus-Three-Nucleon Interactions
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We formulate the in-medium similarity renormalization group (IM-SRG) for open-shell nuclei using

a multireference formalism based on a generalized Wick theorem introduced in quantum chemistry.

The resulting multireference IM-SRG (MR-IM-SRG) is used to perform the first ab initio study of all even

oxygen isotopes with chiral nucleon-nucleon and three-nucleon interactions, from the proton to the

neutron drip lines. We obtain an excellent reproduction of experimental ground-state energies with

quantified uncertainties, which is validated by results from the importance-truncated no-core shell model

and the coupled cluster method. The agreement between conceptually different many-body approaches

and experiment highlights the predictive power of current chiral two- and three-nucleon interactions, and

establishes the MR-IM-SRG as a promising new tool for ab initio calculations of medium-mass nuclei far

from shell closures.

DOI: 10.1103/PhysRevLett.110.242501 PACS numbers: 21.30.!x, 05.10.Cc, 13.75.Cs, 21.60.De

Introduction.—Neutron-rich nuclei are the focus of the
experimental program of current and next-generation rare
isotope facilities. Emerging phenomena such as halos or
neutron skins make these nuclei ideal laboratories to study
nuclear interactions in delicately tuned scenarios, and
motivate the use of ab initio many-body calculations to
provide their description from first principles. Such calcu-
lations make it possible to confront modern nuclear
Hamiltonians from chiral effective field theory [1,2] with
a wealth of data beyond few-body systems.

For light nuclei, the ab initio no-core shell model
(NCSM) [3,4] provides the capabilities for studies of iso-
topic chains, but for medium-mass nuclei this approach is
not feasible because of its large computational effort.
Many-body techniques with more modest computational
scaling, such as the coupled cluster (CC) [5–7] or self-
consistent Green’s function methods [8,9], can be used to
probe nuclei in the vicinity of shell closures, but are not
applicable for open-shell nuclei far from shell closures.
For such nuclei, a self-consistent Gor’kov formalism was
developed recently [10,11], but this approach is currently
limited to second-order terms in the many-body perturba-
tion expansion.

In this Letter, we describe the extension of the in-medium
similarity renormalization group (IM-SRG) framework of
Refs. [12,13] to open-shell nuclei by means of a multirefer-
ence formulation. We use the resulting multireference IM-
SRG (MR-IM-SRG) and two other many-body approaches,
the importance-truncated no-core shell model (IT-NCSM)
and the CCmethod, to perform the first ab initio study of all
even oxygen isotopeswith chiral nucleon-nucleon (NN) and
three-nucleon (3N) Hamiltonians.

Formalism.—The main tools for the derivation of the
MR-IM-SRG are the generalized normal-ordering and

Wick theorem by Kutzelnigg and Mukherjee [14]. We
write a string of creation and annihilation operators in
tensorial form

A1...k
l...N " ay1 . . .a

y
k aN . . . al; (1)

and expand it in terms of components that are normal
ordered with respect to an arbitrary reference state j!i
[14–16]. We obtain

A1...k
l...N ¼ :A1...k

l...N:þ !1
l :A

23...k
mn...N:! !1

m:A
23...k
ln...N:þ % % %

þ ð!1
l!

2
m ! !1

m!
2
l þ !12

lmÞ:A3...k
n...N:þ % % % ; (2)

where ::: indicates normal ordering, and we have intro-
duced irreducible one- and two-body density matrices !ð1Þ

and !ð2Þ:

!1
2 " h!jA1

2j!i; !12
34 " h!jA12

34j!i! !1
2!

3
4 þ !1

3!
2
4:

(3)

The particle rank of the irreducible density matrices is
evident from the single-particle indices. Generally, up to
n-body irreducible density matrices !ðnÞ appear in the
expansion of an n-body operator, which are defined recur-
sively in terms of density matrices of lower rank and
encode information about n-body correlations in the
reference state [14]. For an independent-particle state, all
matrices except !ð1Þ vanish.
Products of normal-ordered operators can be expanded

by means of a generalized Wick theorem, e.g.,

:A12
56::A

34
78:¼ :A1234

5678:þ!1
7:A

234
568:!"3

5:A
124
678:þ%%%

þð!1
7!

2
8!!1

8!
2
7þ!12

78Þ:A34
56:!!12

57:A
34
68:þ%%% ;

(4)
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In-medium SRG approach: 
Application to Ca and Ni isotopes 

IM-SRG: Ca and Ni Isotopes

• IM-SRG calculations for A~100 are routine, tin isotopes in 
progress

• controlled uncertainties & consistent results for different ab-
intio methods

• systematic overbinding due to current chiral Hamiltonians - 
results for new generation of chiral Hamiltonians soon
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• IM-SRG calculations for A~100 are routine, tin isotopes in 
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• controlled uncertainties & consistent results for different ab-
intio methods

• systematic overbinding due to current chiral Hamiltonians - 
results for new generation of chiral Hamiltonians soon
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Self-Consistent Green’s Function Method: 
Oxygen, Fluorine, Nitrogen isotopes  

Magic and  
semi-magic nuclei 
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Isotopic chains around oxygen from evolved chiral two- and three-nucleon interactions

A. Cipollone,1, ∗ C. Barbieri,1, ∗ and P. Navrátil2, ∗

1Department of Physics, University of Surrey, Guildford GU2 7XH, UK
2TRIUMF, 4004 Westbrook Mall, Vancouver, BC, V6T 2A3, Canada

(Dated: March 21, 2013)

We extend the formalism of self-consistent Green’s function theory to include three-body interactions and
apply it to isotopic chains around oxygen for the first time. The third-order algebraic diagrammatic construction
[ADC(3)] equations for two-body Hamiltonians can be exploited upon defining system-dependent one- and
two-body interactions coming from the three-body force, and correspondingly dropping interaction reducible
diagrams. This goes beyond the standard normal ordering truncations recently used in ab-inito studies. The
Koltun sum rule for the total binding energy acquires a correction due to the added three-body interaction.
This formalism is then applied to study chiral two-nucleon (2N) and three-nucleon forces (3NF) evolved to
low momentum cutoffs. We find that these interactions reproduce the binding energies of nitrogen, oxygen and
fluorine isotopes to great accuracy, providing clear indication of the predictive power of this approach. All three
neutron driplines are correctly predicted when full 3NF are included. The formalism introduced also allows to
calculate form factors for nucleon transfer on doubly magic systems.

PACS numbers: 21.10.-k, 21.30.Fe, 21.60.De

Introduction. - The ultimate goal of ab-initio nuclear the-
ory is to achieve accurate predictions of nuclear properties that
are consistent with the underlying theory of QCD and are pa-
rameter free as much as possible. Advancing on this problem
is presently of primary importance in the mid mass region of
the nuclear chart, in response to significant advances in the
discovery of new nuclides at radioactive isotope facilities [1].
Moreover, parameter free predictions would help reducing un-
certainties in our knowledge of dripline isotopes that are cur-
rently beyond experimental reach [2]. The requirement of ac-
curacy poses strong requirements on both the knowledge of
the nuclear interaction and the many-body techniques used in
the calculations.

Breakthroughs over the last decade were possible due to
the introduction of many-body methods that scale gently with
increasing particle number and therefore can reach systems
well above the p shell. Self consistent Green’s function the-
ory (SCGF) [3, 4], coupled cluster (CC) [5–7] and in-medium
similarity renormalization group (IM-SRG) [8, 9] have been
employed in ab-initio calculations of doubly closed shell nu-
clei with masses up to A∼60. For open-shells, semi-magic
isotopes can be calculated by breaking particle conservation
symmetry and reformulating theories in terms of Hartree-Fock
Bogolioubov reference states as done in Grokov theory [10]
and in IM-SRG. Calculations based on IM-SRG have been
performed for ground state energies [9]. On the other hand,
the state-of-the-art SCGF theory not only can be extended to
open shells [11] but it gives access to a wealth of nuclear struc-
ture information. This includes the addition or removal of one
or two nucleons to/from the calculated ground states [12, 13]
and direct link to microscopic optical potentials [14].

In this Letter, we extend the scope of SCGF to include
three-nucleon forces (3NFs) in finite nuclei. We define density
dependent one- and two-body forces derived from the 3NF
part of the hamiltonian and work out the first order correction
to the Koltun sum rule to obtain binding energies. The method

is applied to the isotopic chains of oxygen, nitrogen and fluo-
rine, as well as spectra of single-neutron states in the sd shell.
This opens the possibility of probing modern realistic nuclear
interactions on a wide range of experimental data, including
excitation spectra, the evolution of shell closures, and the po-
sition of driplines.
Formalism. We employ Green’s function (or propagator)

theory, where the object of interest is the single particle prop-
agator [15].

gαβ(ω) =
∑

n

⟨ΨA0 |cα|Ψ
A+1
n ⟩⟨Ψ

A+1
n |c

†

β
|ΨA0 ⟩

ω − εA+1
n + iη

+

+
∑

k

⟨ΨA0 |c
†

β
|ΨA−1

k ⟩⟨Ψ
A−1
k |cα|Ψ

A
0 ⟩

ω − εA−1
k − iη

, (1)

where greek indices α,β,..., label a complete orthonormal ba-
sis set and εA+1

n ≡ (EA+1
n − EA0 ) and εA−1

k ≡ (EA0 − E
A−1
k )

are the nucleon addition and separation energies, respectively.
In Eq. (1), |ΨA+1

n ⟩, |ΨA−1
k ⟩ are the eigenstates and EA+1

n , EA−1
k

are the eigenenergies of the (A ± 1)-nucleon system. Hence,
gαβ(ω) describes the exact propagation of a single-nucleon or
hole excitation through the system. From Eq. (1) we also ex-
tract the one-body reduced density matrix,

ραβ = ⟨Ψ
A
0 |c
†

β
cα|ΨA0 ⟩ =

∫

C↑
dω gαβ(ω) , (2)

where the integration contourC ↑ is taken on the upper half of
the imaginary plane.

We start our calculations with the intrinsic Hamiltonian
H(A) = H − Tc.m.(A) = U(A)+ V(A)+W in which the kinetic
energy of the center of mass (c.o.m.) has been subtracted and
we put in evidence the dependence on the number of nucle-
ons A. The terms U, V and W collect all the the one-, two-
and three-nucleon contributions, respectively. Based on this,
we define system dependent one- and two-body effective in-
teractions obtained by contraction with the correlated density
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FIG. 3. (Color online) Top. Evolution of single-particle energies for
neutron addition and removal around sub-shell closures of oxygen
isotopes. Bottom. Binding energies obtained from the Koltun SR and
the poles of propagator (1), compared to experiment (bars) [32, 33].
All points are corrected for the kinetic energy of the c.o.m. motion.
For all lines, red squares (blue dots) refer to induced (full) 3NFs.

the full Hamiltonian—is to raise this last orbit above the con-
tinuum threshold and confirms the increasing repulsive ef-
fects of the two-pion exchange Fujita-Miyazawa interaction
on this orbits, as the neutron sd shell is filled [34]. Instead,
the d5/2 quasiparticle states are lowered by about 1 MeV on
average, providing extra binding through the Koltun SR for-
mula (7). The consequences of this trends are demonstrated
by the calculated ground state energies shown in the bottom
panel: the induced hamiltonian systematically under binds the
whole isotopic chain, and confirms earlier predictions based
solely on the original 2N-N3LO interaction [35]. The dripline
is also erroneously placed at 28O because of the lack of re-
pulsion in the d3/2 orbit. On the other hand, contributions
from pre-existing 3NFs are substantial and increase with the
mass number up to 24O, when the unbound d3/2 orbit starts be-
ing filled. As a result, the full Hamiltonian nicely reproduces
both the experimental ground state energies and the observed
dripline at 24O [36]. Our result suggest a ground state reso-
nance for 28O unbound by 5.2 MeV with respect to 24O. How-
ever this estimate is likely to be affected the presence of the
continuum which is important for this nucleus but neglected
in the present work.
The same effects are demonstrated in Fig. 4 for the semi-

magic odd-even isotopes of nitrogen and fluorine. Induced
3NF forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully corrected by
full 3NFs that strongly binds 23N with respect to 27N, in accor-
dance with the experimentally observed dripline. The repul-
sive effects of filling the d3/2 is also observed in 29F. However,
the inclusion of an extra proton provides enough extra binding
to keep the latter isotope bound by about 700 keV with respect
to 25F, in much better agreement with the experimental value
of 1.47 MeV. The induced interaction alone would overesti-
mate this binding and pre-existing 3NFs are fundamental in
achieving the correct balancing between the attraction gener-
ated by the extra proton and the repulsion due to the filling of
the neutron sd shell.
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In conclusion, we have considered the extension of the
SCGF method to include three-body hamiltonians. By prop-
erly defining system dependent effective one- and two-body
interactions that include the relevant contribution form 3NFs,
calculations can be performed with formalisms already ex-
isting for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of
the Hamiltonian and employs fully correlated densities instead
of unperturbed reference states. We applied this approach for
the first time to study SRG-evolved chiral 2N and 3N inter-
actions on the isotopic chains of nitrogen, oxygen and fluo-
rine. We find that chiral 3NF at N2LO are crucial in predicting
the binding energies of these isotopes and they reproduce the
correct behaviour at the neutron driplines for all three cases.
Within the estimated errors due to the many-body techniques
and the dependence on the SRG evolutions, we find a remark-
able agreement between our calculations and the experimental
energies along all three isotopic chains.
Recent results [11] clearly show that state of the art SCGF

methods can be straightforwardly extended to the correspond-
ing Gorkov formalism for open shells, which is now under-
way. This would not only allows direct calculations of semi-
magic even-even isotopes with analogous quality as above but
would also allow extracting a wealth of information on neigh-
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the full Hamiltonian—is to raise this last orbit above the con-
tinuum threshold and confirms the increasing repulsive ef-
fects of the two-pion exchange Fujita-Miyazawa interaction
on this orbits, as the neutron sd shell is filled [34]. Instead,
the d5/2 quasiparticle states are lowered by about 1 MeV on
average, providing extra binding through the Koltun SR for-
mula (7). The consequences of this trends are demonstrated
by the calculated ground state energies shown in the bottom
panel: the induced hamiltonian systematically under binds the
whole isotopic chain, and confirms earlier predictions based
solely on the original 2N-N3LO interaction [35]. The dripline
is also erroneously placed at 28O because of the lack of re-
pulsion in the d3/2 orbit. On the other hand, contributions
from pre-existing 3NFs are substantial and increase with the
mass number up to 24O, when the unbound d3/2 orbit starts be-
ing filled. As a result, the full Hamiltonian nicely reproduces
both the experimental ground state energies and the observed
dripline at 24O [36]. Our result suggest a ground state reso-
nance for 28O unbound by 5.2 MeV with respect to 24O. How-
ever this estimate is likely to be affected the presence of the
continuum which is important for this nucleus but neglected
in the present work.
The same effects are demonstrated in Fig. 4 for the semi-

magic odd-even isotopes of nitrogen and fluorine. Induced
3NF forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully corrected by
full 3NFs that strongly binds 23N with respect to 27N, in accor-
dance with the experimentally observed dripline. The repul-
sive effects of filling the d3/2 is also observed in 29F. However,
the inclusion of an extra proton provides enough extra binding
to keep the latter isotope bound by about 700 keV with respect
to 25F, in much better agreement with the experimental value
of 1.47 MeV. The induced interaction alone would overesti-
mate this binding and pre-existing 3NFs are fundamental in
achieving the correct balancing between the attraction gener-
ated by the extra proton and the repulsion due to the filling of
the neutron sd shell.
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In conclusion, we have considered the extension of the
SCGF method to include three-body hamiltonians. By prop-
erly defining system dependent effective one- and two-body
interactions that include the relevant contribution form 3NFs,
calculations can be performed with formalisms already ex-
isting for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of
the Hamiltonian and employs fully correlated densities instead
of unperturbed reference states. We applied this approach for
the first time to study SRG-evolved chiral 2N and 3N inter-
actions on the isotopic chains of nitrogen, oxygen and fluo-
rine. We find that chiral 3NF at N2LO are crucial in predicting
the binding energies of these isotopes and they reproduce the
correct behaviour at the neutron driplines for all three cases.
Within the estimated errors due to the many-body techniques
and the dependence on the SRG evolutions, we find a remark-
able agreement between our calculations and the experimental
energies along all three isotopic chains.
Recent results [11] clearly show that state of the art SCGF

methods can be straightforwardly extended to the correspond-
ing Gorkov formalism for open shells, which is now under-
way. This would not only allows direct calculations of semi-
magic even-even isotopes with analogous quality as above but
would also allow extracting a wealth of information on neigh-
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We extend the formalism of self-consistent Green’s function theory to include three-body interactions

and apply it to isotopic chains around oxygen for the first time. The third-order algebraic diagrammatic

construction equations for two-body Hamiltonians can be exploited upon defining system-dependent one-

and two-body interactions coming from the three-body force, and, correspondingly, dropping interaction-

reducible diagrams. The Koltun sum rule for the total binding energy acquires a correction due to the

added three-body interaction. This formalism is then applied to study chiral two- and three-nucleon forces

evolved to low momentum cutoffs. The binding energies of nitrogen, oxygen, and fluorine isotopes are

reproduced with good accuracy and demonstrate the predictive power of this approach. Leading order

three-nucleon forces consistently bring results close to the experiment for all neutron rich isotopes

considered and reproduce the correct driplines for oxygen and nitrogen. The formalism introduced also

allows us to calculate form factors for nucleon transfer on doubly magic systems.
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Introduction.—The ultimate goal of ab initio nuclear
theory is to achieve accurate predictions of nuclear prop-
erties that are consistent with the underlying theory of
QCD. Advancing on this problem is presently of primary
importance in the mid mass region of the nuclear chart, in
response to significant advances in the discovery of new
nuclides at radioactive isotope facilities [1]. Moreover,
parameter free predictions would help reducing uncertain-
ties in our knowledge of those drip line isotopes that are
currently beyond experimental reach [2]. It has now
become clear that accurate predictions require the explicit
inclusion of multi-nucleon forces [3–5]. For the oxygen
chain, it has been shown that the Fujita-Miyazawa three-
nucleon force (3NF) is responsible for explaining the
anomalous dripline at 24O [3]. Reference [6] confirmed
this result by considering approximated chiral 3NFs at
next-to next-to leading order (NNLO). However, no inves-
tigation of 3NF’s effects on neighboring isotopic chains
has been made to date. In this Letter, we find that a correct
inclusion of NNLO 3NFs consistently reproduces the
observed binding energies and that 3NFs similarly affect
the behavior near the drip lines for other isotopes as well.

Concerning the calculation of mid mass nuclei, break-
throughs were possible over the last decade due to the
introduction of many-body methods that scale gently
with increasing particle number. Self-consistent Green’s
function theory (SCGF) [7,8], coupled cluster (CC)
[4,6,9], and in-medium similarity renormalization group
(IM-SRG) [10,11] have been employed in ab initio calcu-
lations of doubly closed shell nuclei with masses up to
A" 60. For open shells, semi-magic isotopes can be
calculated by breaking particle conservation symmetry
and reformulating theories in terms of Hartree-Fock
Bogolioubov reference states, as done in Gorkov theory

[12–15] and in IM-SRG [16]. Calculations based on
IM-SRG have been performed for ground state energies.
On the other hand, the state-of-the-art SCGF theory can
also be extended to the Gorkov approach [12,14] and it
gives access to a wealth of nuclear structure information.
This includes the addition or removal of one or two nucle-
ons to and from the calculated ground states [17–19] and
direct link to microscopic optical potentials [20,21].
This Letter extends the scope of SCGF to include 3NFs

in finite nuclei. We define density dependent one- and
two-body interactions derived from the 3NF part of the
Hamiltonian and work out the correction to the Koltun
sum rule to obtain binding energies. This allows us to fully
include chiral 3NFs in the third-order algebraic diagram-
matic construction [ADC(3)] equations commonly used in
quantum chemistry applications [22,23]. The method is
applied to study chiral 3NFs in the oxygen, nitrogen, and
fluorine isotopic chains, as well as the spectra of single
neutron states in the sd shell. This opens the possibility of
probing modern realistic nuclear interactions on a wide
range of experimental data, including excitation spectra,
the evolution of shell closures, and the position of drip lines.
Formalism.—We employ Green’s function (or

propagator) theory and calculate the single particle
propagator [24],
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à  3NF crucial for reproducing binding energies and driplines around oxygen 
à  d3/2 raised by genuine 3NF 



➝ Systematic overbinding of medium-mass nuclei (in agreement with other ab initio methods) 
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Ab initio calculations have shown that chiral two- and three-nucleon interactions correctly reproduce binding
energy systematics and neutron drip lines of oxygen and nearby isotopes. Exploiting the novel Gorkov-Green’s
function approach applicable to genuinely open-shell nuclei, we present the first ab initio investigation of Ar, K,
Ca, Sc, and Ti isotopic chains. In doing so, stringent tests of internucleon interaction models are provided in the
medium-mass region of the nuclear chart. Leading chiral three-nucleon interactions are shown to be mandatory to
reproduce the trend of binding energies throughout these chains and to obtain a good description of two-neutron
separation energies. At the same time, nuclei in this mass region are systematically overbound by about 40 MeV.
While the fundamental N = 20 and 28 magic numbers do emerge from basic internucleon interactions, the former
is shown to be significantly overestimated, which points to deficiencies of state-of-the-art chiral potentials. The
present results demonstrate that ab initio many-body calculations can now access entire medium-mass isotopic
chains including degenerate open-shell nuclei and provide a critical testing ground for modern theories of nuclear
interactions.
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Introduction. Many-body interactions involving more than
two nucleons have been long known to play an important role
in nuclear physics. They arise naturally, due to the internal
structure of the nucleon, and are deemed to be necessary
to explain saturation properties of nucleonic matter [1–3].
In finite systems, three-nucleon forces (3NFs) provide key
mechanisms governing, e.g., the shell evolution and the
boundaries of nuclear stability. Studies based on interactions
derived from chiral effective field theory (EFT) [4] have shown
that leading two-pion 3NF terms (of the Fujita-Miyazawa type)
induce changes in the location of traditional magic numbers
and explain the anomalous position of the oxygen neutron drip
line compared to neighboring elements [5–7].

Ab initio many-body methods currently capable of tar-
geting nuclei beyond the oxygen region include self-
consistent Green’s function (SCGF) [7,8], coupled-cluster
(CC) [9,10], and in-medium similarity renormalization group
(IM-SRG) [11,12] theories. These approaches make use of
sophisticated and accurate many-body schemes that have,
however, been intrinsically limited, until recently, to the
(vicinity of) closed-shell systems. Thus, ab initio calculations
have been confined so far to closed-(sub)shell nuclei along
isotopic chains in the oxygen mass region [6,7,13] and to
heavier, isolated, closed-shell systems [12,14,15]. To over-
come this limitation and address genuinely open-shell nuclei,
a novel method based on the Gorkov reformulation of SCGF

*vittorio.soma@cea.fr
†C.Barbieri@surrey.ac.uk
‡thomas.duguet@cea.fr

theory has been introduced [16] along with proof-of-principle
calculations [17,18]. Based on this approach, the present
work constitutes the first-ever ab initio application to the
description of medium-mass open-shell nuclei starting from
realistic two- and three-nucleon interactions. Specifically, we
address five isotopic chains around Z = 20, namely, Ar, K, Ca,
Sc, and Ti. This extends the systematic and model-independent
description of nuclei beyond the light sector of the nuclear
chart, opening up a new region where chiral interactions can
be tested and fundamental questions such as the emergence of
magic numbers from basic nuclear forces can be addressed.

Our results demonstrate that leading chiral 3N interactions
are key to reproducing the trend of binding energies but
nuclei are systematically overbound in contrast to what has
been seen around oxygen [6,7]. Despite this overbinding,
relative energies (specifically two-neutron separation energies)
are fairly well reproduced once 3NFs are accounted for.
Additionally, N = 20 and 28 magic numbers do emerge, the
latter greatly benefiting from the inclusion of 3NFs [5,19].
Still, the magic character of the N = 20 neutron number is
significantly overestimated, which points to deficiencies of
state-of-the-art chiral nuclear interactions.

Formalism. We start from the intrinsic Hamiltonian Ĥint =
T̂ − T̂c.m. + V̂ + Ŵ , with the kinetic energy of the center of
mass subtracted and V̂ and Ŵ being the two-nucleon (NN ) and
3N interactions. The Gorkov formalism exploits the breaking
of particle-number symmetry to effectively account for the
nonperturbative physics associated with pairing correlations.
Specifically, it targets the ground state, |!0⟩, of the grand
canonical Hamiltonian "̂int = Ĥint − µpẐ − µnN̂ under the
constraint that the correct particle number A = N + Z is

0556-2813/2014/89(6)/061301(5) 061301-1 ©2014 American Physical Society
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•  Flexible approach capable performing exact calculations for few-nucleon 
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9 We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-
10 baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σþ;Σ0;Σ−

11 hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group
12 transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-
13 nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-
14 exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to
15 p-shell hypernuclei, in particular to 7

ΛLi,
9
ΛBe, and 13

Λ C. We show that the chiral hyperon-nucleon
16 interactions provide ground-state and excitation energies that generally agree with experimentation within
17 the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight
18 constraints on the hyperon-nucleon interactions.

DOI:19 PACS numbers: 21.80.+a, 21.60.De, 13.75.Ev, 05.10.Cc

20 Over the past decades, the structure of hypernuclei has
21 been the focus of a number of experimental programs
22 worldwide, providing a wealth of high-precision data on
23 excitation spectra as well as binding energies [1–6]. These
24 experimental efforts continue and are intensified, e.g., in
25 several present and future experiments at international
26 facilities like J-PARC, JLab, and FAIR. Hypernuclear
27 structure theory has a rich history of phenomenological
28 models that have accompanied and driven the experiments,
29 most notably the shell model for p-and sd-shell hyper-
30 nuclei [7,8], cluster models [9–12], various mean-field
31 models [13–16], and recent Monte Carlo calculations with
32 simplified phenomenological interactions [17,18]. Ab initio
33 calculations based on realistic nucleonic and hyperonic
34 interactions were limited to systems of up to four nucleons
35 so far [19–22]. Nevertheless, these calculations established
36 a direct link between experimental observables and the
37 underlying interactions and helped to elucidate the role of
38 hyperons in matter. Advancing ab initio methods beyond
39 their current limits is highly desirable. It would allow us to
40 exploit the wealth of accurate experimental data, e.g., on
41 p-shell hypernuclei, for constraining and improving the
42 underlying interactions and to make predictions for yet
43 unobserved phenomena.
44 There are two main aspects that hindered ab initio
45 calculations for p-shell hypernuclei in the past. First, a
46 prerequisite is accurate ab initio calculations of the non-
47 strange parent nucleus. The approach has to be able to
48 provide converged results for the parent nucleus and
49 the nucleonic Hamiltonian has to yield a good description
50 of the experimental nuclear spectra. In the past few
51 years, ab initio methods using two-nucleon (NN) and

52three-nucleon (3N) interactions constructed in chiral effec-
53tive field theory (EFT) succeeded in providing a quanti-
54tative description of ground states and spectra of nuclei in
55the p shell and beyond [23,24]. This is facilitated by a
56multitude of developments on computational many-body
57methods that give access to an unprecedented range of
58nuclei [25–30].
59Second, the hyperon-nucleon (YN) interaction is ill
60constrained due to the scarce scattering data in the YN
61sector. Different models for the YN interaction, such as the
62widely used NSC and ESC models of the Nijmegen group
63[31,32], quark models [33], and the Jülich meson exchange
64models [34], already yield different results at the level of
65cross sections, rendering a meaningful ab initio description
66of hypernuclei difficult. In a new development, chiral EFT
67has been employed to derive YN interactions within the
68same conceptual framework as the nucleonic interactions.
69Leading-order (LO) and, very recently, next-to-leading-
70order (NLO) chiral YN interactions were developed by
71Polinder et al. [35] and Haidenbauer et al. [36], respec-
72tively, succeeding their earlier meson-exchange interactions
73like the Jülich04 model [34]. An exciting option for
74constraining YN interactions directly from QCD emerges
75from recent lattice QCD calculations [37,38], e.g., for YN
76phase shifts. In combination with the advances in ab initio
77many-body methods, this opens unique opportunities to
78learn about the structure of hypernuclei from first princi-
79ples. By confronting accurate calculations with precise
80hypernuclear data, one can characterize and constrain the
81YN interaction, which is still the main source of uncer-
82tainty, and assess the relevance of three-baryon interactions
83for hypernuclear structure. Quantitative knowledge of the
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194 consistent with Ref. [21]. The excitation energies of the 1þ

195 excited states, as shown in the lower plots, also agree very
196 well with previous few-body calculations and with exper-
197 imentation. Both NCSM approaches agree at the level of
198 1–5 keV in all model spaces accessible to both, thus
199 validating the implementations.
200 Application to p-shell hypernuclei.—The IT NCSM
201 enables ab initio calculations for all single-Λ hypernuclei
202 throughout the p-shell. Here we focus on a representative
203 subset, where precise experimental data on the spectros-
204 copy is available. We discuss 7

ΛLi as one of the best studied
205 p-shell hypernuclei in both experiment and phenomeno-
206 logical models, 9

ΛBe for which the first spin doublet is
207 degenerate posing a fine-tuning problem for the interaction,
208 and 13

Λ C representing the upper p shell. In comparison to the
209 well studied s-shell, hypernuclei in the p-shell probe higher
210 relative partial waves of the YN interaction and thus
211 enhance spin-orbit and tensor effects. Based on these
212 calculations we assess the performance of present YN
213 interactions, in particular, the Jülich04 and the LO

214chiral YN interactions for cutoff momenta 600 and
215700 MeV=c.
216We start with the discussion of 7

ΛLi in Fig. 2. Panel
217(a) shows the absolute energies and the excitation energies
218of the nonstrange parent nucleus 6Li obtained for the chiral
219NN þ 3N interaction with an SRG evolution to
220αN ¼ 0.08 fm4. Note that the converged energies are
221practically independent of αN in the lower p shell
222[23,24]. The good agreement of absolute and excitation
223energies with experimentation resulting from the chiral
224NN þ 3N Hamiltonian and the good convergence of the IT
225NCSM are evident and are a prerequisite for accurate
226hypernuclear calculations.
227When adding a hyperon to the nonstrange parent
228nucleus, in a simple picture, the weak attractive YN
229interaction leads to a lowering of the ground-state energy
230and to a splitting of each J > 0 level into a doublet with
231angular momenta J þ 1=2 and J − 1=2. The energy split-
232ting is directly controlled by and sensitive to the YN
233interaction. Both effects are evident in the IT NCSM results
234for 7

ΛLi in panels (b) and (c) of Fig. 2. Moreover, the
235differences between the YN interactions are evident. For
236the Jülich04 interaction employed in Fig. 2(c), the ground-
237state energy is in reasonable agreement with experimenta-
238tion, but the level ordering is wrong. The splitting of the

F1:1 FIG. 1 (color online).4 Ground-state energy of s-shell hyper-
F1:2 nuclei obtained with the LO chiral YN interaction with cutoff
F1:3 600 MeV=c.Solidsymbols representJNCSMresults, crossesshow
F1:4 IT NCSM results. Panel (a) shows the ground-state energies of 3ΛH
F1:5 for ℏΩ ¼ 20 MeV, αY ¼ 0 fm4 and αN ¼ 0 fm4 (▪) and αN ¼
F1:6 0.08 fm4 (•), with EFT-motivated extrapolations (colored bands)
F1:7 compared to the experimental value (gray band) and the result of a
F1:8 Faddeev calculation [21] (— see inset). Panels (b) and (c) show
F1:9 results for the0þ groundstates (▪)and1þ first excitedstates (•)of 4ΛH

F1:10 and 4
ΛHe, respectively, using αY ¼ αN ¼ 0 fm4 and

F1:11 ℏΩ ¼ 28 MeV. The upper plots show absolute energies, the lower
F1:12 plots excitation energies. The colored bands give the result of an
F1:13 exponential extrapolation of the ground-state energy and the solid
F1:14 lines represent results of previous few-body calculations [21].

F2:1FIG. 2 (color online). Absolute and excitation energies of the
F2:2first four states of 7

ΛLi for the LO chiral (b) and the Jülich04 YN
F2:3interaction (c) compared to the nonstrange parent nucleus 6Li (a).
F2:4For the LO chiral YN interaction in panel (b) we use the two
F2:5cutoff values 600 MeV=c (dash) and 700 MeV=c (double
F2:6square). Experimental data from Refs. [1,2,54]. All calculations
F2:7use αN ¼ 0.08 fm4, αY ¼ 0.0 fm4, and ℏΩ ¼ 20 MeV.
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194 consistent with Ref. [21]. The excitation energies of the 1þ

195 excited states, as shown in the lower plots, also agree very
196 well with previous few-body calculations and with exper-
197 imentation. Both NCSM approaches agree at the level of
198 1–5 keV in all model spaces accessible to both, thus
199 validating the implementations.
200 Application to p-shell hypernuclei.—The IT NCSM
201 enables ab initio calculations for all single-Λ hypernuclei
202 throughout the p-shell. Here we focus on a representative
203 subset, where precise experimental data on the spectros-
204 copy is available. We discuss 7

ΛLi as one of the best studied
205 p-shell hypernuclei in both experiment and phenomeno-
206 logical models, 9

ΛBe for which the first spin doublet is
207 degenerate posing a fine-tuning problem for the interaction,
208 and 13

Λ C representing the upper p shell. In comparison to the
209 well studied s-shell, hypernuclei in the p-shell probe higher
210 relative partial waves of the YN interaction and thus
211 enhance spin-orbit and tensor effects. Based on these
212 calculations we assess the performance of present YN
213 interactions, in particular, the Jülich04 and the LO

214chiral YN interactions for cutoff momenta 600 and
215700 MeV=c.
216We start with the discussion of 7

ΛLi in Fig. 2. Panel
217(a) shows the absolute energies and the excitation energies
218of the nonstrange parent nucleus 6Li obtained for the chiral
219NN þ 3N interaction with an SRG evolution to
220αN ¼ 0.08 fm4. Note that the converged energies are
221practically independent of αN in the lower p shell
222[23,24]. The good agreement of absolute and excitation
223energies with experimentation resulting from the chiral
224NN þ 3N Hamiltonian and the good convergence of the IT
225NCSM are evident and are a prerequisite for accurate
226hypernuclear calculations.
227When adding a hyperon to the nonstrange parent
228nucleus, in a simple picture, the weak attractive YN
229interaction leads to a lowering of the ground-state energy
230and to a splitting of each J > 0 level into a doublet with
231angular momenta J þ 1=2 and J − 1=2. The energy split-
232ting is directly controlled by and sensitive to the YN
233interaction. Both effects are evident in the IT NCSM results
234for 7

ΛLi in panels (b) and (c) of Fig. 2. Moreover, the
235differences between the YN interactions are evident. For
236the Jülich04 interaction employed in Fig. 2(c), the ground-
237state energy is in reasonable agreement with experimenta-
238tion, but the level ordering is wrong. The splitting of the

F1:1 FIG. 1 (color online).4 Ground-state energy of s-shell hyper-
F1:2 nuclei obtained with the LO chiral YN interaction with cutoff
F1:3 600 MeV=c.Solidsymbols representJNCSMresults, crossesshow
F1:4 IT NCSM results. Panel (a) shows the ground-state energies of 3ΛH
F1:5 for ℏΩ ¼ 20 MeV, αY ¼ 0 fm4 and αN ¼ 0 fm4 (▪) and αN ¼
F1:6 0.08 fm4 (•), with EFT-motivated extrapolations (colored bands)
F1:7 compared to the experimental value (gray band) and the result of a
F1:8 Faddeev calculation [21] (— see inset). Panels (b) and (c) show
F1:9 results for the0þ groundstates (▪)and1þ first excitedstates (•)of 4ΛH

F1:10 and 4
ΛHe, respectively, using αY ¼ αN ¼ 0 fm4 and

F1:11 ℏΩ ¼ 28 MeV. The upper plots show absolute energies, the lower
F1:12 plots excitation energies. The colored bands give the result of an
F1:13 exponential extrapolation of the ground-state energy and the solid
F1:14 lines represent results of previous few-body calculations [21].

F2:1FIG. 2 (color online). Absolute and excitation energies of the
F2:2first four states of 7

ΛLi for the LO chiral (b) and the Jülich04 YN
F2:3interaction (c) compared to the nonstrange parent nucleus 6Li (a).
F2:4For the LO chiral YN interaction in panel (b) we use the two
F2:5cutoff values 600 MeV=c (dash) and 700 MeV=c (double
F2:6square). Experimental data from Refs. [1,2,54]. All calculations
F2:7use αN ¼ 0.08 fm4, αY ¼ 0.0 fm4, and ℏΩ ¼ 20 MeV.
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239 spin doublet is significantly too large and has the wrong
240 sign, leading to a systematically reversed level ordering.
241 This deficiency is already visible for the excited states of
242 the A ¼ 4 hypernuclei [21].
243 The LO chiral YN interactions employed in Fig. 2(b)
244 provide a consistently better description of the spectra. The
245 ground-state energies obtained for cutoffs 600 and
246 700 MeV=c are slightly below and above the experiment,
247 respectively. The excitation energies exhibit a weaker
248 cutoff dependence, with the cutoff 600 MeV=c yielding
249 slightly lower excitation energies. If we interpret this
250 dependence on the YN cutoff as an estimator for the effects
251 of higher-order terms in the chiral expansion, then we can
252 state that the LO chiral YN interaction gives ground-state
253 and excitation energies that agree with experimentation
254 within the truncation uncertainties.
255 The IT NCSM also gives access to spectroscopic
256 observables such as transition strengths. As an example
257 we consider the BðE2Þ strength for the 5=2þ → 1=2þ

258 transition in 7
ΛLi, which has been experimentally deter-

259 mined to BðE2Þ ¼ 3.6þ0.5
−0.5ðstatÞ

þ0.5
−0.4ðsystÞe2 fm4 [55]. For

260 the LO chiral YN interaction with cutoff 600 MeV=c, we
261 obtain BðE2Þ ¼ 2.3ð1Þ and 2.4ð1Þe2fm4 forNmax ¼ 10 and
262 12, respectively, using ℏΩ ¼ 20 MeV. The numbers in
263 brackets indicate the uncertainties of the threshold extrapo-
264 lation [24]. Obviously, convergence of this long-range
265 observable is problematic and a systematic study exploiting
266 the frequency dependence to perform extrapolations is
267 needed. A simpler example is the BðM1Þ strength for
268 the spin-flip transition 3=2þ → 1=2þ. We obtain BðM1Þ ¼
269 0.31ð1Þ μ2N for Nmax ¼ 10 and 12, indicating good con-
270 vergence. This is in excellent agreement with a preliminary
271 experimental value reported in [56].
272 As a second case we discuss the spectrum of 9

ΛBe, as
273 depicted in Fig. 3. The nucleonic parent nucleus 8Be is
274 unbound with respect to decay into two α particles, but the
275 IT NCSM still provides a good description of the ground-
276 and excited-state energies in a bound-state approximation.
277 The addition of the hyperon binds the 9

ΛBe hypernucleus.
278 Again, the LO chiral YN interactions for cutoff 600 and
279 700 MeV=c yield different ground-state energies that
280 bracket the experimental value. A peculiarity of 9

ΛBe is
281 that the spin doublet resulting from the 2þ state in 8Be is
282 practically degenerate, with the higher-J state being at
283 slightly lower excitation energy experimentally, contrary to
284 the other light hypernuclei. The LO chiral YN interactions
285 reproduce the excitation energy of the doublet and the near
286 degeneracy within threshold extrapolation and convergence
287 uncertainties. In contrast, the Jülich04 interaction gives a
288 significant splitting of the spin doublet, in contradiction to
289 experimentation.
290 As a final example from the upper p shell, we discuss
291 13

Λ C in Fig. 4. The SRG-evolved chiral NN þ 3N inter-
292 action at αN ¼ 0.08 fm4 gives a ground-state energy of the
293 nucleonic parent 12C about 6 MeV below experimentation.

294This overbinding is related to the emergence of SRG-
295induced 4N interactions in the upper p shell that are not
296included in the present calculations (see Refs. [23,24]). The
297absolute energies of 13

Λ C inherit this overbinding; however,
298taking this into account, the chiral LO interactions are
299consistent with the experimental ground-state energies
300within the cutoff uncertainty. Also the excited spin doublet

F3:1FIG. 3 (color online). Same as Fig. 2, but for 9
ΛBe and 8Be.

F4:1FIG. 4 (color online). Same as Fig. 2, but for 13Λ C and 12C. Note
F4:2the change of scale in the lower panels.
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Testing chiral LO NY potentials 
with Λ-Σ mixing included 

 
…outperform the Julich ’04  

YN potential 



•  No-core shell model (NCSM) 
–  A-nucleon wave function expansion in 

the harmonic-oscillator (HO) basis 
–  short- and medium range correlations 
–  Bound-states, narrow resonances 

No-core shell model with continuum 
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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n-4He & p-4He scattering within NCSMC 

n-4He scattering phase-shifts for  
 chiral NN and NN+3N potential 

Total n-4He cross section with NN and NN+3N potentials 

G. Hupin, S. Quaglioni and P. Navrátil, arXiv:1409.0892 [nucl-th] 
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FIG. 2. (Color online) Computed (solid red lines) 4He(p, p)4H
angular differential cross section at forward scattering angle
θp = 25◦ (a) and backscattering angle θp = 141◦ (b) as a
function of the proton incident energy compared with mea-
surements (symbols) from Refs. [3–6, 10]. The calculation
corresponds to the most complete results of Fig. 1.

scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the Jπα

α Tα = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.

In Fig. 2 our most complete results (including the first
seven low-lying states of 4He) for the 4He(p, p)4He an-
gular differential cross section at the laboratory proton-
scattering angles of θp = 25◦ and 141◦ are compared to
measurements in the range of incident energies up to 12
MeV [3–6, 10] . The agreement with data is excellent
both at forward and backward angles. The high energy
tail of the cross section was already well described within
the more limited model space of Ref. [23]. The effect of
the additional 5Li states, included in the present calcu-
lation, is essentially confined around their eigenenergies.
The first 3/2- and 1/2- states play the largest role, sub-
stantially improving the agreement with experiment at
lower energies. Indeed, we see in Fig. 2 that the cal-
culated differential cross section lies within the experi-
mental error bars in the peak region dominated by the
resonances, though the width of the peak is somewhat
overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-
ysis of data [20]. The resonance positions are in fairly
good agreement. The largest deviation occurs for the
1/2- state, which is 240 keV below the energy reported

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
δ′(Ekin) of the phase shift is maximal [20], and widths Γ =
2/δ′(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [38]. Units are in MeV.

R-matrix Present results

Jπ ER Γ ER Γ

3/2− 1.67 1.37 1.77(1) 1.70(5)

1/2− 3.35 9.40 3.11(2) 7.90(50)

in Ref. [20]. However we find larger differences for
the widths, particularly for the 5Li g.s., which is 24%
broader than in the R-matrix analysis. The computed
widths, particularly that of the 1/2- resonance, present
the largest uncertainty in terms of number of 4He states
included in the calculation (indicated in parenthesis).
In Fig. 3, we zoom to energies near the resonances at
the proton scattering angle of 169◦, of interest for non-
Rutherford backscattering spectroscopy, where the R-
matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV≤ Ep ≤ 3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of θp = 169◦ and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 39].
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Differential p-4He  
cross section  
with NN+3N  

potentials 3N force enhances 1/2- ßà 3/2- splitting;  
essential at low energies!  



 NCSM/RGM calculations of transfer reactions  
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Applications to (d,p) and (d,n) reactions 

Example: 3He(d,p)4He 
 

Work in progress:  
7Li(d,p)8Li & 8Li(d,p)9Li 

Ab InitioMany-Body Calculations of the 3Hðd; nÞ4He and 3Heðd; pÞ4He Fusion Reactions

Petr Navrátil1,2 and Sofia Quaglioni2

1TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
2Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

(Received 4 October 2011; published 24 January 2012)

We apply the ab initio no-core shell model combined with the resonating-group method approach to

calculate the cross sections of the 3Hðd; nÞ4He and 3Heðd; pÞ4He fusion reactions. These are important

reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a

selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon

data, we performed many-body calculations that predict the S factor of both reactions. Virtual three-body

breakup effects are obtained by including excited pseudostates of the deuteron in the calculation. Our

results are in satisfactory agreement with experimental data and pave the way for microscopic inves-

tigations of polarization and electron-screening effects, of the 3Hðd;!nÞ4He bremsstrahlung and other

reactions relevant to fusion research.

DOI: 10.1103/PhysRevLett.108.042503 PACS numbers: 21.60.De, 25.10.+s, 26.35.+c, 27.10.+h

The 3Hðd; nÞ4He and 3Heðd; pÞ4He reactions are leading
processes in the primordial formation of the very light
elements (mass number, A # 7), affecting the predictions
of big bang nucleosynthesis for light nucleus abundances
[1]. With its low activation energy and high yield,
3Hðd; nÞ4He is also the easiest reaction to achieve on
Earth, and is pursued by research facilities directed toward
developing fusion power by either magnetic (e.g., ITER
[2]) or inertial (e.g., NIF [3]) confinement. The cross
section for the dþ 3H fusion is well known experimen-
tally, while more uncertain [4] is the situation for the
branch of this reaction, 3Hðd;!nÞ4He, that is being con-
sidered as a possible plasma diagnostic in modern fusion
experiments [5]. Larger uncertainties also dominate the
3Heðd; pÞ4He reaction that is known for presenting consid-
erable electron-screening effects at energies accessible by
beam-target experiments. Here, the electrons which are
bound to the target (usually a neutral atom or molecule)
lead to enhanced values (increasingly with decreasing
energy) for the reaction rate, effectively preventing direct
access to the astrophysically relevant bare-nucleus cross
section. Consensus on the physics mechanism behind this
enhancement has not been reached yet [6], largely because
of the difficulty of determining the absolute value of the
bare cross section. Past theoretical investigations of these
fusion reactions include various R-matrix analyses of
experimental data at higher energies [7–10] as well as
microscopic calculations with phenomenological interac-
tions [11,12]. However, in view of remaining experimental
challenges (some of which are described above) and the
large role played by theory in extracting the astrophysi-
cally important information, it would be highly desirable
to achieve a microscopic description of the 3Hðd; nÞ4He
and 3Heðd; pÞ4He fusion reactions that encompasses
the dynamic of all five nucleons and is based on the

fundamental underlying physics: the realistic interactions
among nucleons and the structure of the fusing nuclei.
In this Letter, we present the first ab initio many-body

calculation of the 3Hðd; nÞ4He and 3Heðd; pÞ4He fusion
reactions starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.
The present calculations are performed in the framework of
the ab initio no-core shell model combined with the
resonating-group method (NCSM/RGM) [13–15], a uni-
fied approach to bound and scattering states of light nuclei.
We use, in particular, the orthonormalized many-body
wave functions (" being the channel index)

j!J#Ti ¼
X

"

Z
drr2Â"j"J#T

"r i ½N
'1=2$("ðrÞ

r
; (1)

with an intercluster antisymmetrizer for the (A' a, a)

partition Â", center-of-mass separation ~rA'a;a, and
binary-cluster channel states

j"J#T
"r i ¼ ½ðjA' a%1I

#1
1 T1ija%2I

#2
2 T2iÞðsTÞ

) Y‘ðr̂A'a;aÞ(ðJ
#TÞ &ðr' rA'a;aÞ

rrA'a;a
: (2)

The intercluster relative-motion wave functions $J#TðrÞ
satisfy the integral-differential coupled-channel equations

X

"0

Z
dr0r02½N '1=2HN '1=2(""0ðr; r0Þ

$"0ðr0Þ
r0

¼ E
$"ðrÞ
r

; (3)

with bound- or scattering-state boundary conditions.
Here, H J#T

""0 ðr; r0Þ and N J#T
""0 ðr; r0Þ, commonly referred

to as integration kernels, are, respectively, the
Hamiltonian and overlap (or norm) matrix elements over
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Solar p-p chain 

p-p chain 
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Solar neutrinos 

   Eν < 15 MeV 
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3He(4He,γ)7Be & 7Be(p,γ)8B radiative capture 

7Be 
p 

8B 2+ g.s. bound by 136 keV  (expt. 137 keV) 
S(0) ~ 19.4(0.7) eV b 

Current data evaluation: S(0)=20.8(2.1) eV b 

P.N., R. Roth, S. Quaglioni, 
Physics Letters B 704 (2011) 379 
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4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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ḡ 1

◆✓
c
�̄

◆

|⇥J⇡T
A � =

X

�

Z
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5

Comparing the NCSM and NCSMC results for negative
parity at fixed Nmax, we find for all states significant contri-
butions from the additional continuum degrees of freedom ac-
counted for in the NCSMC. The sole exception is the 7

2
� state,

where the e↵ects stay below 0.5 MeV. The NCSMC reduces
the energy di↵erences to the n-8Be threshold compared to the
NCSM for all states and for all Nmax, respectively. Concerning
the dependence on the model-space size for NCSMC, we find
only small e↵ects from increasing Nmax from 6 to 12, which
are slightly larger for the higher-excited states but remain well
below 0.5 MeV. Hence, the NCSMC calculations are well con-
verged, as already observed for the eigenphase shifts in Fig. 2.
This is di↵erent for the NCSM energies, which show signif-
icantly larger changes hinting at less converged calculations.
This is of course expected, because all excited states of 9Be
are resonances and the NCSM basis of A-body HO Slater de-
terminants is not designed for a proper description of contin-
uum states. Altogether, the NCSMC generally improves the
agreement with experiment, and, in particular, and we find
excellent agreement for the 1

2
� and second 5

2
� resonances at

Nmax = 12. Note that also the energy of the bound 3
2
� ground

state is lowered by about 0.5 MeV due to continuum contribu-
tions and the agreement with experiment is improved.

The behavior of the positive-parity states of 9Be [Fig. 4(b)]
is similar: we find even more dramatic e↵ects due to the con-
tinuum degrees of freedom as evident from comparing the en-
ergies for fixed Nmax between the two approaches. Again, the
NCSMC reduces all energy di↵erences relative to the n-8Be
threshold compared to the NCSM, leading to an improved
agreement with experiment. The agreement is particularly
striking for the S -wave dominated 1

2
+ state, whose energy at

Nmax = 7 is shifted caused by the continuum degrees of free-
dom by about 5 MeV right on top of its experimental posi-
tion slightly above threshold, and remains practically constant
when we increase the model-space size further to Nmax = 11 in
the NCSMC. Also the remaining NCSMC energies are much
less a↵ected by increasing Nmax from 7 to 11 than the NCSM
energies, which exhibit significant changes. We find the 3

2
+

resonance dominated by the 4S 3
2

partial wave in good agree-
ment with experiment, while the discrepancies remain larger
for the 5

2
+ and 9

2
+ resonances. Finally, we note that contri-

butions from the broad 4+ state of 8Be might improve the 9
2
+

resonance of 9Be.
We add a comment on excitation energies that can be read

o↵ Fig. 4 by the energy di↵erences to the ground-state. The
excitation energy of the 5

2
� resonance and similarly all exci-

tation energies of the positive-parity states relative to the 1
2
+

state are in good agreement with experiment already at the
level of NCSM calculations. Hence, the main issue of the
NCSM is to produce the correct threshold energy.

In Fig. 5 we study the e↵ects of the initial chiral 3N inter-
action on the 9Be energy levels. Therefore, we compare the
spectrum to the one for the NN+3N-induced Hamiltonian in-
cluding the SRG-induced 3N interactions only, again for neg-
ative parity at Nmax = 12 and positive parity at Nmax = 11 in
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FIG. 5: (color online) Negative (a) and positive (b) parity spectrum
of 9Be relative to the n-8Be threshold at Nmax = 12 and 11, respec-
tively. Shown are NCSM (first two columns) and NCSMC (last two
columns) results compared to experiment [5]. First and last columns
contain the energies for the NN+3N-induced and the second and
fourth column for the NN+3N-full Hamiltonian, respectively. Re-
maining parameters identical to Fig. 4.

panels (a) and (b), respectively. Each panel shows in the first
column the NCSM results for the NN+3N-induced Hamilto-
nian and in the second column for the NN+3N-full Hamilto-
nian. The two last columns cover the NCSMC energies for
which the Hamiltonians are reversed (see column labels), and
the shaded area denotes the extracted widths. Again, we in-
clude experimental energies and widths in the middle.

For negative parity, all states, except the first 5
2
� resonance,

are sensitive to the inclusion of the initial chiral 3N interac-
tion with e↵ects of roughly similar size for both, the NCSM
and the NCSMC: the inclusion of the chiral 3N interaction in-
creases the resonance energies relative to the threshold. The
NCSM energy di↵erences for the NN+3N-induced Hamilto-
nian are typically close to or above the experimental energies,

NN NN+3N Expt. NN+3N NN 

9Be is a stable nucleus 
… but all its excited states unbound  

A proper description requires to include 
effects of continuum 

 
 

Three-nucleon interaction and continuum  
improve agreement with experiment  for 

negative parity states 
 
 

Continuum crucial for the description of 
positive-parity states 

J. Langhammer, P. N., G. Hupin, S. Quaglioni, A. Calci, R. Roth,  
in preparation 
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Table 11.45 from (2012KE01): Energy levels of 11N

Eres (MeV± keV) Ex (MeV± keV) Jπ; T Γ (keV) Decay Reactions
1.49 ± 60 0 1

2

+; 3

2
830 ± 30 p 1, 2, 3, 6

2.22 ± 30 0.73 ± 70
1

2

−

600 ± 100 p 1, 2, 3, 5, 6
3.06 ± 80 (1.57 ± 80) < 100 p 3
3.69 ± 30 2.20 ± 70

5

2

+
540 ± 40 p 1, 3, 5, 6

4.35 ± 30 2.86 ± 70
3

2

−

340 ± 40 p 1, 3, 5, 6
5.12 ± 80 (3.63 ± 100) (5

2

−) < 220 p 5
5.91 ± 30 4.42 ± 70 (5

2

−) p 3, 5, 6
6.57 ± 100 5.08 ± 120 (3

2

−) 100 ± 60 p 3, 6

1

11N Expt. (TUNL evaluation) 

Jπ    T       Eres [MeV]  Ex [MeV]  Γ [keV] 
 
1/2+  3/2       1.35        0            “4100” 
1/2-   3/2       1.94        0.59          580   
3/2-   3/2       4.69        3.34          280 
5/2+  3/2       4.75        3.40        1790 
3/2+  3/2        4.95       3.60        “4760” 
5/2-   3/2       5.95        4.60          470 
3/2-   3/2       7.68        6.33          620 

0 1 2 3 4 5 6 7 8 9 10
Ekin [MeV]

-60

-30

0

30

60

90

120

150

180

δ 
[d

eg
]

2P1/2

2S1/2 4S3/2

2P3/2

6P3/2

6P5/2

5/2+

Negative parity 1/2- and 3/2- resonances in a 
good agreement with the current evaluation 

 
Positive parity resonances too broad  
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tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1ℓJπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum ℓ add up to give
the total spin of the system J⃗ = s⃗+ ℓ⃗ (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT ⟩ and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1⟩ to



11N from chiral NN+3N within NCSMC 
–  Preliminary 

p+10C scattering: structure of 11N resonances 

Table 11.45 from (2012KE01): Energy levels of 11N

Eres (MeV± keV) Ex (MeV± keV) Jπ; T Γ (keV) Decay Reactions
1.49 ± 60 0 1

2

+; 3

2
830 ± 30 p 1, 2, 3, 6

2.22 ± 30 0.73 ± 70
1

2

−

600 ± 100 p 1, 2, 3, 5, 6
3.06 ± 80 (1.57 ± 80) < 100 p 3
3.69 ± 30 2.20 ± 70

5

2

+
540 ± 40 p 1, 3, 5, 6

4.35 ± 30 2.86 ± 70
3

2

−

340 ± 40 p 1, 3, 5, 6
5.12 ± 80 (3.63 ± 100) (5

2

−) < 220 p 5
5.91 ± 30 4.42 ± 70 (5

2

−) p 3, 5, 6
6.57 ± 100 5.08 ± 120 (3

2

−) 100 ± 60 p 3, 6

1

11N Expt. (TUNL evaluation) 

Jπ    T       Eres [MeV]  Ex [MeV]  Γ [keV] 
 
1/2+  3/2       1.35        0            “4100” 
1/2-   3/2       1.94        0.59          580   
3/2-   3/2       4.69        3.34          280 
5/2+  3/2       4.75        3.40        1790 
3/2+  3/2        4.95       3.60        “4760” 
5/2-   3/2       5.95        4.60          470 
3/2-   3/2       7.68        6.33          620 

✓ 
✓ 

No candidate for 3.06 MeV resonance 
 

We predict only one 5/2- resonance below the 3/2-
2 

 
Calculations suggest that either 5.12 MeV or 5.91 

MeV resonance might be 3/2+ instead 
 

NCSMC resonance predictions more in line with 
assignments in 11Be  

è 

è 
è 



4He + n + n 

NCSM/RGM for three-body clusters: Structure of 6He 

Phaseshifts (preliminary results) 
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mode suggested in Refs. [1,3]. In addition, our results do
not support the presence of a low-lying 0þ monopole
resonance above the 1þ state reported by previous theo-
retical investigations of the 4Heþ nþ n continuum, in
which the 4He was considered as an inert particle with no
structure. These three-body calculations, performed within
the hyperspherical-harmonics basis [8,9,20,27] and with
the complex scaling method [28,29], obtained a similar
sequence of 2þ1 , 2þ2 , 1þ, and 0þ2 levels, but different
resonance positions and widths. (Only the first two 2þ

resonances were shown in Ref. [20].) Microscopic 4Heþ
nþ n calculations based on schematic interactions were
later reported in Refs. [10,11] but showed only results for
the 2þ1 narrow resonance and do not comment on a 0þ

excited state.
In Fig. 2, the energy spectrum of states extracted from

the resonances of Fig. 1 is compared to the one recently
measured at GANIL [4]. Our results are consistent with the
presence of the second low-lying narrow 2þ resonance
observed for the first time in this experiment. A J ¼ 1
resonance was also measured at 4.3 MeV; however, the
parity of such a state is not yet determined, and it is not
possible to univocally identify it with the 1þ resonance
found at 2.77 MeV in the present calculations. At the same
time, the energy dependence of the 1− eigenphase shifts of
Fig. 1(b) does not favor the interpretation of this low-lying
state as a dipole mode. We also predict two broader
negative-parity states not observed.

A thorough study of the convergence of the results with
respect to all parameters defining the size of our model
space was performed. These are the maximum value Kmax
of the hyperangular momentum in the expansion (3), the
size Nmax of the HO basis used to calculate the g.s. of 4He
and the localized parts of Eqs. (5) and (6), and finally, the
size Next ≫ Nmax of the extended HO basis used to
represent a delta function in the core-halo distance entering
the portion of the Hamiltonian kernel that accounts for the
interaction between the halo neutrons (see Eq. (39) of
Ref. [14]). In each case, the number of integration points
and the hyper-radius a used to match internal and asymp-
totic solutions within the R-matrix method on the
Lagrange mesh were chosen large enough to reach stable,
a-independent results. All calculations were performed
with the same ℏΩ ¼ 14 MeV frequency adopted for the
study of the 6He g.s. [14].
We first set the extended HO basis size to the value

(Next ¼ 70) we found to be sufficient for the 0þ g.s. energy
[14] and established that expansion (3) converges at
Kmax ¼ 19=20 for all negative- or positive-parity channels
except the 0þ, requiring Kmax ¼ 28. Examples of the
convergence pattern with respect to the HO basis size
Nmax are shown in Fig. 3. In general, convergence is
satisfactory at Nmax ¼ 13. For the higher-lying resonances,
this value is not quite sufficient but already provides the
qualitative behavior to start discussing the continuum
structure of the system. Next, we study the dependence
on Next, which regulates the range of the potential kernel.
Not unexpectedly, an increase of Next requires at the same
time incrementing the matching hyper-radius a needed to
reach the asymptotic region (we used values of up to 60 fm)
and Kmax, for which we used values as high as 40 in the 0þ
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FIG. 2 (color online). Comparison of the spectrum obtained
within this work using the NCSM/RGM to the experimental
spectrum measured at the SPIRAL facility (GANIL) [4].
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FIG. 1 (color online). Calculated 4Heþ nþ n (a) positive- and
(b) negative-parity attractive eigenphase shifts as a function of the
kinetic energy Ekin with respect to the two-neutron emission
threshold. See the text for further details.
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4Heþ nþ n Continuum within an Ab initio Framework
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The low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio
framework that encompasses the 4Heþ nþ n three-cluster dynamics characterizing its lowest decay
channel. This is achieved through an extension of the no-core shell model combined with the resonating-
group method, in which energy-independent nonlocal interactions among three nuclear fragments can be
calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio
many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-
body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange
mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the
known Jπ ¼ 2þ resonance as well as a result consistent with a new low-lying second 2þ resonance recently
observed at GANIL at 2.6 MeVabove the 6He ground state. We also find resonances in the 2−, 1þ, and 0−

channels, while no low-lying resonances are present in the 0þ and 1− channels.

DOI: 10.1103/PhysRevLett.113.032503 PACS numbers: 21.60.De, 25.10.+s, 27.20.+n

Introduction.—Nuclear systems near the drip lines, the
limits of the nuclear chart beyond which neutrons or
protons start dripping out of nuclei, offer an exciting
opportunity to advance our current understanding of the
interactions among nucleons, so far mostly based on the
study of stable nuclei. This is not a goal devoid of
challenges. Experimentally, the study of these rare nuclei
with atypical neutron-to-proton ratios is challenged by their
short half-lives and minute production cross sections. A
major stumbling block in nuclear theory has to deal with
the low breakup thresholds, which cause bound, resonant,
and scattering states to be strongly coupled. Particularly
arduous, in this respect, are those systems for which the
lowest threshold for particle emission is of the three-body
nature, such as 6He, which breaks into an α particle (4He
nucleus) and two neutrons at the excitation energy of
0.975 MeV. Aside from a narrow resonance characterized
by spin parity Jπ ¼ 2þ, located at 1.8 MeV above the
ground state (g.s.), the positions, spins, and parities of the
excited states of this nucleus are still under discussion.
Experimentally, the picture is not clear. Proton-neutron
exchange reactions between two fast colliding nuclei
produced resonantlike structures around 4 [1] and 5.6
[2] MeV of widths Γ ∼ 4 and 10.9 MeV, respectively, as
well as a broad asymmetric bump at ∼5 MeV [3], but
disagree on the nature of the underlying 6He excited
state(s). While the structures of Refs. [1,3] are explained
as dipole excitations compatible with oscillations of the
positively charged 4He core against the halo neutrons, that
of Ref. [2] is identified as a second 2þ state. More recently,
a much narrower 2þ (Γ ¼ 1.6 MeV) state and a J ¼ 1
resonance (Γ ∼ 2 MeV) of unassigned parity were popu-
lated at 2.6 and 5.3 MeV, respectively, with the two-neutron

transfer reaction 8Heðp; 3HÞ6He% [4]. On the theory side,
several predictions, all incomplete in different ways,
suggest a 2þ1 , 2

þ
2 , 1

þ, 0þ sequence of levels above the
first excited state but disagree on the positions and
widths. Those from six-body calculations with realistic
Hamiltonians [5–7] were obtained within a bound-state
approximation and cannot provide any information about
the widths of the levels. Vice versa, those from three-body
models [8,9], from microscopic three-cluster models
[10,11], or from calculations hinging on a shell-model
picture with an inert 4He core [12,13] can describe the
continuum but were obtained using schematic interactions
and a simplified description of the structure. In this Letter,
we present the first ab initio calculation of the 4Heþ nþ n
continuum starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.
Formalism.—In the no-core shell model combined with

the resonating-group method (NCSM/RGM), A-body
bound and/or scattering states characterized by three-
cluster configurations are described by the wave function

jΨJπTi ¼
X

ν

ZZ
dxdyx2y2ÂνjΦJπT

νxy iGJπT
ν ðx; yÞ; ð1Þ

in terms of a set of unknown continuous amplitudes
GJπT

ν ðx; yÞ and (a1, a2, a3) ternary cluster channels

jΦJπT
νxy i

¼
h
ðja1α1I

π1
1 T1iðja2α2I

π2
2 T2ija3α3I

π3
3 T3iÞðs23T23ÞÞðSTÞ

×ðYlx
ðη̂23ÞYlyðη̂1;23ÞÞ

ðLÞ
iðJπTÞδðx−η23Þ

xη23

δðy−η1;23Þ
yη1;23

ð2Þ
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5H ≈ 4He + n + n in progress 



Conclusions and Outlook 

•  Significant progress in ab initio approaches for p-shell nuclei 

•  New very successful approaches to medium mass nuclei 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  

•  Outlook: 
–  Applications to astrophysics 

•  nuclear reactions important for astrophysics (and fusion energy generation) 
•  equation of state, symmetry energy  

–  Neutrino physics 
•  neutrino-nucleus cross sections 
•  double beta decay nuclear matrix elements 

–  Fundamental symmetries 
•  nuclear corrections (CKM unitarity…) 

–  Strangeness 
•  hypernuclei 

•  Ab initio calculations of nuclear structure & reactions is a dynamic field with rapid advances  

•  Several exact methods applicable to few-nucleon systems (A=3,4) 


