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Overview

2

 Concepts of entropy
 von Neumann entropy
 Coarse grained entropy
 Relevant entropy
 Entanglement entropy
 Husimi-Wehrl entropy

 Examples: Quantum quench, x-y model
 Lattice gauge theory
 Holographic thermalization
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Thermalization
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Thermalization means that a system loses all information about its history.

This can happen in two ways:

1. The system exchanges information with its environment (heat bath). This is 
true thermalization. The thermal state of the system is characterized by a 
density matrix, which only depends on the conserved quantum numbers 
(energy, particle number, charge, etc.). The entropy of the system is a measure 
of its information loss to the environment. In this case, the quantum state of the 
system becomes entangled with the quantum state of its environment.

2. The state of the system evolves by itself into a complicated superposition of 
components that cannot be distinguished by any practical measurements. This 
is apparent thermalization, implied by the coarse graining inherent in physical 
observations. A single eigenstate of the system can appear thermal (eigenstate 
thermalization). The physical mechanism by which a system can evolve into 
such complex states under its own dynamics is called quantum chaos.
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Density matrix
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The state of a system (ensemble) is specified by the density matrix: 

ρ = ρ†; tr ρ( ) = 1; tr ρ2( ) ≤1; Ψ ρ Ψ ≥ 0 ∀ Ψ

The density matrix evolves according to the von Neumann equation: 

 
i ∂
∂t

ρ = H ,ρ[ ] → ρ t( ) = e− iHt /ρ 0( )eiHt /

SvN = tr ρ lnρ( )
The unitary time evolution implies that the von Neumann entropy

does not change with time: Information about the quantum system is never lost.

However, not all information about the quantum system may be recoverable
by an observer, in principle or in practice: “coarse graining” or “entanglement”.
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Nakajima-Zwanzig theory
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For a highly complex system (many degrees of freedom) usually only simple,
slowly varying observables (few-body, low resolution, etc.) can be measured.

Split the density matrix into a relevant part ρR that determines the value of the 
observable A and an irrelevant part ρI that has no influence on the value of A:

ρ = ρR + ρI with A = tr ρA( ) = tr ρRA( ); tr ρI A( ) = 0

Define a projection operator P such that: ρR = Pρ

Then:
∂
∂t

ρR = −PLρR(t)− iPL e
− i(1−P )LρI (0)− dτG(τ )ρR(t −τ )

0

t

∫

where
 
L = 1

H ,[ ] G(τ ) = PLe− i(1−P )Lτ 1− P( )LP

[For a review, see e.g.: J. Rau, BM, Physics Reports 272 (1996) 1]

(memory kernel)
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Time scales
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An important question is which observables A should be considered to define 
the relevant part ρR of the density matrix. These should be experimentally 
measurable quantities, which implies that they should vary only on observable 
time scales: they must be slowly varying observables.

In many cases the memory kernel, which describes the feedback from the 
irrelevant degrees of freedom, decays much faster than the characteristic time 
scale on which the value of the observables change. The evolution equation for 
ρR  then becomes effectively Markoff.

Any analysis of the problem of entropy creation and thermalization in the 
Nakajima-Zwanzig formalism thus starts from an analysis of time scales.

Note: The projector P  ensuring tr(PρA) = tr(ρA) is called the Kawasaki-Gunton 
projector; the resulting evolution equation for ρR is called the Robertson 
equation. Because ρ is time dependent, P depends on time. 
An alternative formulation is due to Mori, who defined the projector such that    
tr(PMρeqA) = tr(ρeqA), which makes PM time independent.
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Relevant entropy
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The relevant entropy  SR = tr(ρR ln ρR)  generally increases with time (but not
necessarily monotonously), because information gets transferred into irrelevant 
degrees of freedom.  Special case:  1-P = projector on the environment.

The relevant entropy is “in the eye of the beholder”.

C = conserved observables
E = experimentally relevant observables
S = “slowly varying” observables
A = all observables

Markov approximation

relevant entropy

= R

Good if large separation of time scales
“Level of description” of the system
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Husimi coarse graining
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A minimal coarse-graining of a quantum system is achieved by projecting its 
density matrix on a coherent state (Husimi [“Fushimi”] 1940):

 
H (x, p) = z ρ z with z = x

Δ−1
+ ip
Δ

⇒ ρH = z H (z) z
z
∑

The Husimi phase-space density is positive semi-definite and can be used to 
define a coarse grained entropy (Wehrl, 1978):

 
SH = −Tr ρH lnρH[ ] = −

dxdp
2π∫ H (x, p)lnH (x, p)

As opposed to the von Neumann entropy S = -Tr(ρlnρ), the Husimi-Wehrl entropy 
is not conserved by unitary evolution. Its value depends on Δ, but its growth rate 
at large times is independent of the smearing Δ (Kunihiro et al. [KMOS], 2008). 
Far off equilibrium it is equal to the Kolmogorov-Sinaï (KS) entropy growth rate:

 

dSH
dt

t→∞⎯ →⎯⎯ λα = SKS
α

λα >0

∑
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Husimi II
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H�(p, x; t) ⇥
⇤

dp� dx�

�� exp
�
� 1

��
(p� p�)2 � �

� (x� x�)2
⇥

W (p�, x�; t)

Hσ pσ x
(p, x;t) = dp 'dx '

2π σ pσ x

exp − (p − p ')
2

2σ p
2 − (x − x ')

2

2σ x
2

⎛

⎝⎜
⎞

⎠⎟∫ W (p ', x ';t)

Special case of Gaussian smearing with σpσx = ħ/2:

Husimi density can be understood as smearing of the Wigner function with a 
Gaussian minimum-uncertainty wave packet:

Formally, the Husimi transformation of the density matrix is of the form:

ρH = ΓHρ = Γ σ p ,σ x( )ρ
with σp2= ħΔ/2, σx2= ħ/2Δ. Note that Γ is not quite a projection operator:

Γ σ p ,σ x( )2 = Γ 2σ p , 2σ x( )
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Ĥ(t) =
p2

2
+

m(t)2

2
x2

m(t)2 =ω 2θ(−t) − λ2θ(t)

Quantum quench
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The decay of an unstable vacuum state is a common problem, e.g., in cosmology 
and in condensed matter physics. Paradigm case:  inverted oscillator.

t = 0 t = 1 t = 2

t < 0 |Ψ(x)|²

|Ψ(x)|² |Ψ(x)|² |Ψ(x)|²

V(x)

V(x)V(x)V(x)

with

W (q, p; t) =
�

du e�ipu⇥q +
1
2
u| �̂(t) |q � 1

2
u⇤Wigner function:

Tuesday, December 13, 11



Wigner vs. Husimi 
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YMQM (x-y) model
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A simple example of a non-trivial chaotic quantum system is given by the infrared 
limit of SU(2) gauge theory (Yang-Mills Quantum Mechanics):

 
H =

1
2

pi
2

i=1

3

∑ +
g2

4
xi
2xk

2

i≠ k

3

∑

Further simplification: x1 = x, x2 = y, x3 = 0 (x-y model):
 
H =

1
2
px
2 + py

2( ) + g
2

2
x2y2

Solve equation of motion for Husimi density H(x,y,px,py,t) using superposition of 
Gaussians with time-dependent positions and widths: 

Evolution conserves the coarse grained Hamiltonian

  
H H =

1
2
px
2 + py

2( ) + g
2

2
x2y2 − g

2
4Δ

x2 + y2( ) + g
22

8Δ2 −
1
2
Δ

H (ξi ,t) = exp − cij (t) ξi − ξi
(α ) (t)( ) ξ j − ξ j

(α ) (t)( )
ij
∑⎡

⎣
⎢

⎤

⎦
⎥

α
∑ with ξi = (x, y, px , py )
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YM-QM - the movie

13

Position space x1, x2 Momentum space p1, p2

Hung-Ming Tsai & BM, arXiv:1011.3508
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YM-QM equilibration

14

(x,y)

(px,py)

t = 10 microcanonical equil.80,000 test functions
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YM-QM equilibration - II

15

Initial Husimi density has a narrow 
energy distribution peaked around  
E ≈ 100.  Final Wehrl entropy agrees 
with micro-canonical equilibrium !

t
0 2 4 6 8 10

 (t
)

HS

0

2

4

6

8

10

 / ndf 2χ  2.298 / 42
    0s  0.08506± 7.745 
    1s  0.1212± 5.955 

     τ  0.09047± 1.936 

 / ndf 2χ  2.298 / 42
    0s  0.08506± 7.745 
    1s  0.1212± 5.955 

     τ  0.09047± 1.936 

CS
 grids4 by (180)MCS

 grids4 by (80)MCS
 (t)HS

τ-t/e1-s
0

(t)=sfitS

Hung-Ming Tsai 

Due to Husimi
coarse graining
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Reversals of fortune
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An isolated finite-dimensional system with a compact phase space will eventually return to 
its initial configuration (Poincaré recurrence).  Any thermalization or equilibration is thus only 
apparent.  In realistic systems the Poincaré recurrence time is usually too large to observe.
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Reversals of fortune

16

A simpler question:

Can the microcanonical equilibration 
visible in the Husimi distribution     

be undone by running the evolution 
backwards? 

How real is the Wehrl entropy?

An isolated finite-dimensional system with a compact phase space will eventually return to 
its initial configuration (Poincaré recurrence).  Any thermalization or equilibration is thus only 
apparent.  In realistic systems the Poincaré recurrence time is usually too large to observe.
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Reversals of fortune

16

A simpler question:

Can the microcanonical equilibration 
visible in the Husimi distribution     

be undone by running the evolution 
backwards? 

How real is the Wehrl entropy?

An isolated finite-dimensional system with a compact phase space will eventually return to 
its initial configuration (Poincaré recurrence).  Any thermalization or equilibration is thus only 
apparent.  In realistic systems the Poincaré recurrence time is usually too large to observe.

A small perturbation before 
time reversal will destroy the 
recurrence of the initial state.
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General picture

17

S

S thermal

initial linear equilibrium phase

 = h KS
d S
d t = ∑i λi

Initial fluctuations: initial state dependent

Relaxation to equilibrium

Extent of linear region depends on
log of ratio of thermal fluctuations
to amplitude of initial fluctuations.

Kolmogorov-Sinaï (KS)
entropy growth rate
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Classical lattice SU(3)
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T. Kunihiro, BM, A. Ohnishi, A. Schäfer, T. Takahashi 
& A. Yamamoto, PRD 82 (2010) 114015

LLE = Local Lyapunov exponents:
= Eigenvalues of the Hesse matrix

ILE = Intermediate Lyapunov exponents:
   = Growth rate of distance between

neighboring gauge field config’s

GLE = Global Lyapunov exponents:
 = Asymptotic divergence rate of 
    neighboring gauge field config’s
 = Standard definition of LE’s
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Entanglement entropy - I
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A

B

SA = −TrA ρA lnρA( )

Consider a vacuum QFT in a large box.

An observer restricted to subvolume A 
will experience a reduced density matrix

ρA = TrB (ρ) = TrB 0 0( )

The entanglement entropy between A and B is defined as

SA is a useful measure of how entangled the wave function of the ground state ｜0〉
is between A and B. Naïvely, one would expect that any mode component in A with 
wave number k “knows” about the presence of B if it is located within distance ħ/k of 
the boundary.

It measures the loss of information to the observer from not knowing exactly what 
the state of the field in the subvolume A is, if she does not know the state in B.

Special case of Nakajima-Zwanzig projection!
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Entanglement entropy - II

21

Therefore one expects (Srednicki, 1993):
 
SA  ∂A( )∫


kk

kmax

∑ κ ∂A kmax
2

The entanglement entropy is thus proportional to the surface area of A. If one
chooses kmax ~ MPl , SA becomes the Bekenstein entropy of a black hole with
surface area ||∂A||. Black hole entropy is thus a form of entanglement entropy.

Interactions introduce finite corrections to the UV divergent entanglement entropy.
These provide a measure of the range of quantum correlations in the ground state 
wave function. 

Another variant is when the QFT is not considered in the vacuum state, but at finite 
temperature T. The entanglement entropy then receives a contribution proportional
to Vol(A), which is precisely the thermal equilibrium entropy.
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AdS/CFT dictionary
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HI collision                                 Energy injection
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Questions to answer
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 What is the measure of thermalization on the boundary?

 Local operators are not sufficient

 Nonlocal operators are more sensitive

 What is the thermalization time?

 When observables reach their thermal values

 Entropy is the “gold standard”

〈Tμν〉etc.

〈O(x)O(x′)〉etc.
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Entanglement entropy in AdS/CFT

24

For a (d+1)-dimensional  QFT with a holographic gravity dual, SA can be calculated 
in the dual theory from the area of the extremal surface γA in the bulk, with has the
same boundary ∂A as A:   ∂(γA) = ∂A .

γA

B A

∂A SA =
γ A

4GN
(d+2)

see review by:
Nishioka, Ryu,
Takayanagi,
arXiv:0905.0932

Tuesday, December 13, 11



Entanglement entropy in AdS/CFT

24

For a (d+1)-dimensional  QFT with a holographic gravity dual, SA can be calculated 
in the dual theory from the area of the extremal surface γA in the bulk, with has the
same boundary ∂A as A:   ∂(γA) = ∂A .

γA

B A

∂A SA =
γ A

4GN
(d+2)

B A

∂A

γA

event horizon

At finite temperature, a BH is present, 
and the surface γA picks up a part of the 
event horizon, thus accounting for the 
thermal equilibrium entropy of A.

see review by:
Nishioka, Ryu,
Takayanagi,
arXiv:0905.0932
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Vaidya-AdS geometry
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 Light-like (null) infalling energy shell 
in AdS (shock wave in bulk)
 Vaidya-AdS space-time (analytical)

 z = 0: UV      z = ∞: IR 
 Homogeneous, sudden injection of 

entropy-free energy in the UV
 Thin-shell limit can be studied semi-

analytically
 We studied AdSd+1 for d = 2,3,4
 ⇔ Field theory in d dimensions

v = 0

Injection moment
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Entanglement entropy
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d = 2 d = 3 d = 4

2-point function Wilson loop Wilson shell

For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); PRD 84, 026010

R = 0.5, 1, 1.5, 2
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Information escape time
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Information takes cτ = R/2 
to escape from circular loop

(Very crude) phenomenology for QGP:  
 

τcrit ~ 0.5 ħ/T ≈ 0.3 fm/c  for  T = 300 − 400 MeV

Puzzling question:  
What transports information 
at the speed of light ??
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