
What can we learn about QCD from 
studying hadron spectrum

What are the “effective” constituents of 
hadrons (focus on glue)

How to identify new phenomena in 
hadron spectrum  

Open questions in  
hadron spectroscopy 

and dynamics Adam Szczepaniak 
Indiana University 

Jefferson Lab 



Spectrum “solves” QCD: H|Ψ> = E|Ψ> 

QCD bound states
“strong” + “many”	


 → complex++

QED bound states
“weak” + “few”	


 → complex



Hadrons  
small world (10-15m)  

of fast (v/c~1)  
confined particles  

exerting ~1T forces !!! 
Emergent degrees of freedom should be different from the “bare” constituent

Standard ModelGlashow,Salam,Weinberg  
Nobel-1979

Nuclear Shell Model

Jensen,Geoppert-Meyer,Wigner 
Nobel-1963

Models

Quark Model 
Gell-Mann, Zweig 



peak in intensity 
(cross section)

1800 phase change  
in the amplitude 

�++

Violin Resonances

Two key issues: "
!
1. How to identify resonance in 
the data"
!
2. How to connect with QCD 



2.Connection with QCD 



Confinement in QCD

r0 = 0.5 fm  

Adiabatic           potential  

 in absence of isolated quarks we have to content 
with emergent properties of confinement

•linearly rising potential

•Regge trajectories

•Casimir and N-ality scaling



~1.5fm~0.5fm

Anatomy of Confinement 

Casimir scaling:"
can one identify hadron constituents in this regime? 



provide confinement => long range correlations
are confined => short range correlations

space

time

⟨A⊥A⊥⟩ ⟨A0
A

0⟩

long range 	


instantaneous potential

“constituent gluon” of 
large effective mass 

confined potential 
between external sources

All gluons are equal but some are 
more equal than others:

massive, effective 
particle

Z
dy

⇢(y)

|x� y| !
Z

dy

⇢(y)

rD

(x, y,A)

J. Greensite



τ

0 R

P x C = -1

P x C = +1

JPC=1+-

JPC=1--

Energy of the  
gluon field

Q̄

Q

R→0
glue-lump

flux tube
“gluon chain”

gluons behave as 
physical particles 

with JPC = 1+-

G. Bali



Charmonium spectrum form 
lattice

J.Dudek et al.
J/ψ

ϰ0
ϰ1 ϰ2hcψ’

ηc’

ηc

ψ(4040)
ψ(4415)

ψ(4260)

0-+ 1-+  2-+  1- - 0++  1++ 2++ 0+- 1+- 1+- 1+- 2+- 2+- 3+-

PANDA@FAIR

TERRA INCOGNITA
X,Y,Z states



 lowest-mass 
 hybrid multiplet

0-+ 1-+  2-+  1--

J.Dudek et al.



Casimir Scaling  and 
Constituent particles 

JPgCg
g ⇥ LQQ̄ ⇥ SQQ̄

1+� � 1��SQQ̄=1 =

JPC glue

JPC QQ

_

1+� � 0�+
SQQ̄

= 1��

0�+, 1�+, 2�+

gluons behave as 1+-  quasi-particle
Prediction of (Coulomb gauge) QCD

QCD Hamiltonian

H = HD + HY M + HC

HC =
�

dxdy�a(x)K[x,y,A]ab�
b(y)

K =
1
2

g

⇤ · D
(�⇤2)

g

⇤ · D

three-body 
 potential

one-body  
potential

two-body  
potential



h ! ηc γ  

χ ! J/ψ γ  

χ ! J/ψ γ  

J/ψ ! ηc  γ  

χ ! J/ψ γ  

radiative decays
hybrid→γ meson

0-+ 1-+  2-+  1--     have comparable decays 
rates O(100keV)

PANDA@FAIR



Hadrons Beyond Confinement 



confinement:  linear Regge trajectories 

relativistic “spinning stick” : J ~ M2

Normal (“Casimir” 
hadrons) follow linear 
Regge trajectories (J 

vs M2). 

J =
1

2⇡�
M2 = ↵0M2

They survive 
even in 

presence of 
open decay 

channels But there are known 
exceptions

String-like properties and 
Regge behavior

Mesons

Baryons



Example of known non-ordinary: σ

Possible evidence for non-
qq nature of light scalars

non-qq nonet

qq nonet

non-ordinary σ ordinary trajectory 

Striking similarity with 
Yukawa potential 

Jaffe

Pelaez



“quark model” states

2-- (L=2,S=1)

JLab, LQCD

Same question in charmonium where is J/ψ2  JPC =2--  

PANDA@FAIR

Quark model vs Regge classification 

pp̄ ! 2�� ! �⌘c
pp̄ ! 2�� ! DD̄⇤



1. How to identify resonances in the data



Why Amplitude Analysis  

Experimental Measurement
 QCD Measurement Physics quantities: form 

f a c t o r s , r e s o n a n c e 
parameters masses, etc.

Reaction 
amplitudes

dσMeasured  = Detector 
Acceptance ⨂ dPS |A|2



Amplitude construction
(not the same as based on a a 
microscopic model/theory, e.g. unitary 
diagrams vs Feynman diagrams) 

Axiomatic S-matrix principles:

•Analyticity: Cuts determined by unitarity (i.e. in the physical 
region, continuation is complicated, Mandelstam 
representation known only for 4-point function) 
Asymptotic behavior  ( A(si) <  si O(log sj) )  
Bound state poles : Anomalous Thresholds 
(the XYZ’s) 

•Crossing relations:  
t

s A(s,t)
A(s,t) describes all 
processes related 
by line reversal 

•Regge behavior: Analyticity "
•of “the second kind”

•Global symmetries: EM, chiral, … t

us



• When cross-channel channel 
singularities are all nearby, 
there are no known 
amplitudes that satisfy all S-
matrix constraints   

Two general class of models 

• Resonance/Regge Duality 

violate analyticity of the 2nd kind 

violate analyticity of individual partial waves 

•  Two-body unitarization, of low partial waves

(except perturbatively, e.g. chiral p.t.)

Isobar model

Dual Models



if s and t -channel 
singularities are close by 

truncation leads to 
unphysical dependence on 

cross-channel variable

l
t

s L
maxX

l

(2l + 1)fl(s)Pl(zs ⇠ t)

Isobar model

(s� 4)R2 ⇠ s� 4

m2
e

<< 1
(s-channel break up momentum)2 ____________________________

nearest singularity in exchange channel

t
me

OK if 

then adding s and t 
channel “diagrams” results 

in double counting …  



Resonance

π 

ρ
Force 

Isobars represent a finite set of  
terms in p.w. expansion

“Forces” contribute to infinite 
number of p.w. not including 

them makes analysis truncation 
dependent 



X+ (4050,4250) Belle (2009) B0 →K-(χc1π+) 
_

K*(890)

X+

What may happen when amplitudes are unconstrained 

higher K* spins produced more “wiggles” in cross-channel
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K*(890)

X+(4430)

Exotic Hadrons at LHCb, ICHEP2014 T. Skwarnicki 9

Z(4430)- in LHCb: 2D model independent analysis (a la BaBar)

correlated statistical errors
In the filtered distribution

Jmax=2

4D Belle

K*(892)
J=1 Dalitz plot

K*2(1430)
J=2

Excess of events over 
the K* J ≤ 2 filtered distribution

in the Z(4430)- region
is apparent !

Z(4430)- ?

K* J ≤ 2 
filter

actual distribution

No assumptions about about K*
contributions except for the maximal J
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not seen in BaBar (also in J/ψ π-)  

X± (4430) Belle (2009) B0 →K-(ψ’π+),B+→K0s (ψ’π+) 
_

Recently confirmed by LHCB

with X+

without X+
+K*3

6.4 σ

PANDA@FAIR



<AResonance>  ~ <ARegge> 

constraints from duality 

<ABackgrond>  ~ <APomeron> 

K(σπ+p-σπ-p)
2
-

Re nBH-L at t=0
- SAID
- Reconstructed from DR
- TanHpaê2L bna

0.0 0.5 1.0 1.5 2.0 2.5 3.0
n HGeVL0

20

40

60

80
mb.GeV

ReA(s, t) =
1

⇡

Z
ds0

ImA(s0, t)

s0 � s
V. Mathieu et al.



⇡�(190GeV2)p ! ⌘(0)⇡�p
Pomeron

⇡� t ⇠ cos(✓GJ) ⇡�

⌘

(forward)

(backward)

⇡� ⇡�

⌘

a0, a2, · · ·

P

⇡�

⌘ ⇡�

⌘⇡�⇡�

P

aP

P

ss t t

s
t

COMPASS



dual model

J/ψdual model

PRELIMINARY 

ψ’

Regge

standard 
isobar

PANDA@FAIR



Form Factors  : Regge manifestations in multi-particle production in e+e- / pp  and F.Factors ? 

no
 c

en
tr

al
 p

la
te

au
 

“leading Fock components” 

γ* (s)  

γ* (s)  

ra
pi

di
ty

soft 

soft 

 multi-particles 
production reggizes 

quark an/or adds 
Pomeron cut

M.Gorchtein, P.Guo, A.P. 

_

S. Brodsky P. Lapage 



Black:	
  standard	
  VMD	
  
(fails	
  to	
  describe	
  the	
  data) 
!
Blue:	
  	
  	
  	
  N=0	
    
(C0	
  from	
  Γexp(V→πγ))	
    
Red:	
  	
  	
  	
  	
  N=1	
    
Green:	
  N=2	
    
(fit	
  to	
  the	
  data)  
!
Nature	
  of	
  the	
  steep	
  rise?	
  
Exp.	
  analysis	
  of	
  φ→πγ	
  is	
  
very	
  important

Electromagnetic Form Factors
l+

l−

V

π

π

π

I. Danilkin et al.

fV ⇡(s) =

Z si

4m2

ds0

⇡

�fV ⇡(s0)

s0 � s
+

NX

i=0

Ci!
i(s)

????

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1

2

5

10

20

50

100

s @GeVD

»f wp
HsLê

f w
pH0L

2

Introduction Power counting Applications Transition form factors Summary and outlook

Transition form factors — omega to pion

 1

 10

 100

 0  0.2  0.4  0.6

|F
ω
π0

|2

ml+l− [GeV]

(P1)
(P2)

stand. VMD
NA60

corresponding differential
decay rate:

 0

 1
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 9

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

dΓ
ω
−>
π0
µ
+ µ

−  /
 d

m
µ
+ µ

−2  [1
0-6

 G
eV

-1
]

mµ+µ− [GeV]

param. set (P1)
param. set (P2)

stand. VMD 
NA60

C. Terschlüsen, S.L., arXiv:1003.1030 [hep-ph], Phys. Lett. B, in press



Theory + Phenomenology + Data Analysis Synergy

theory experiment

Joint Physics 
Analysis Center 





make a slide about p \bar p annihilation vs resonacnes 



Backups



∫Nds Im A(s,t) = Im ARegge(N,t) 

If r.h.s  ≠ 0 then  
A(s,t) has a non-zero 
phase at low energy  

> resonances <

a c

b d

a c

b d
ρ,a2

ρ+a2 ρ-a2a2 ~ 1 + exp(i π α(t))

ρ ~ 1 - exp(i π α(t))

no-resoances resoances

K+p K-p



Dispersive analysis of ω/φ→3π

1

2

3

2

1

3

1

2

3

1

2

3

el = only elastic cut in = only inelastic cut

Solution:

AL(s) = 3

Z 1

�1
dzs

1� z2s
2

aR(t(s, zs))

A(s, t) =
J
maxX

J

(2J + 1)dJ1,0(zs)AJ(s)

A(s, t) =
J
maxX

J

(2J + 1)dJ1,0(zs)a
R
J (s) + (s ! t) + (s ! u)

aR(s) =
1

D(s)

Z

4m2

ds0

⇡

⇢(s0)N(s0)AL(s0)

s0 � s

Easily generalized to inelastic case

aR(s) =
1

Del(s)

✓Z si

4m2

ds0

⇡

⇢(s0)N(s)(s0)AL(s0)

s0 � s
+Ain(s)

◆

(e.g. P-waves only)





Dispersive analysis of ω/φ→3π
Integral equation

w(s) is the conformal map of inelastic contributions:  
Coefficients ai  play the role of improved subtraction constants

different from  
Niecknig et. al. 2012  

Anisovich et. al. 1998
7

FIG. 5: Left: Solutions of Eq. (31) with (solid curves) and without (dashed curves) three body e↵ects. Dotted lines indicates
kinematically allowed region. Right: Single di↵erential decay rate d�/ds.

GeV. Again, the advantage of using ⌦(s) in contrast to
⌦0(s), is that no assumption have to be done about un-
known high-energy behavior of �(s).

Another technical detail is that when an integral (31)
is cut-o↵ed the amplitude has an artificial singularity at
s = s

i

. To eliminate it we add and subtract

f(s
i

) log

✓
s
i

� s

s
i

� s
⇡

◆
, (36)

where f(s) is the integrand of (31) without 1/(s � s0)
peace. The subtracted part regularize the integral, while
the added part is absorbed in the conformal mapping
coe�cients.

We wish to remark that if we knew the discontinuity
relation of the amplitude not only at low energies as in
(19) but for all energies, then using analytical properties
of the amplitude we could reconstruct the solution every-
where up to a polynomial. However, there are inelastic
channel contributions that force us either introduce ex-
tra subtractions to suppress poorly known high energy
region or cuto↵ the integral and parametrize the inelas-
tic contribution by conformal mapping technique.

V. NUMERICAL RESULTS

A. !/� ! 3⇡

The integral equation (31) can be solved numerically
by iterations. The convergence of iterations is fast and
already after three repetitions the final solution is ob-
tained. Knowing the amplitude, it is easy to obtain
Dalitz plot distribution or integrated decay width using
the well known formula [1]

d2�

ds dt
=

1

(2⇡)3
1

32M3

1

3
P |F (s, t, u)|2 , (37)

where P = �/4 is the p-wave phase space. All the follow-
ing results are shown when the sum in the conformal vari-
able (29) is truncated at zero order (i.e. only one term)
and this term is fixed to reproduce experimental partial
decay widths [1]: �exp

!!3⇡

= 7.57 MeV and �exp

�!3⇡

= 0.65
MeV. Since the integral equation is linear in F , the fitted
parameter is going to be responsible just for an overall
normalization and it may not be enough to describe the
whole dynamics. However, having only one parameter is
a good starting point to study three body decay proper-
ties.

In Fig. 5 we show the solution of the integral equation
(31) together with the invariant mass distribution. The
significance of the three body e↵ects (crossed-channel
rescattering) is obtained by switching on/o↵ the F̂ term
and fixing parameter a

0

after iterations. As can be seen

aR(s) =
1

Del(s)

 Z si

4m2

ds0

⇡

⇢(s0)N(s)(s0)AL(s0)

s0 � s
+

NX

i=0

ai!
i(s)

!

all details in:   I. Danilkin et al.,  arXiv1076363
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What may happen when amplitudes are unconstrained 

K*(890)

X+(4430)

Recently confirmed by LHCB

�p ! ⇥+K�⇡+ ! (K+n)K�⇡+

Exotic Hadrons at LHCb, ICHEP2014 T. Skwarnicki 9

Z(4430)- in LHCb: 2D model independent analysis (a la BaBar)

correlated statistical errors
In the filtered distribution

Jmax=2

4D Belle

K*(892)
J=1 Dalitz plot

K*2(1430)
J=2

Excess of events over 
the K* J ≤ 2 filtered distribution

in the Z(4430)- region
is apparent !

Z(4430)- ?

K* J ≤ 2 
filter

actual distribution

No assumptions about about K*
contributions except for the maximal J
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B0 →K-(ψ’π+),B+→K0s (ψ’π+) 
_



∫Nds Im A(s,t) = Im ARegge(N,t) 

If r.h.s  ≠ 0 then  
A(s,t) has a non-zero 
phase at low energy  

> resonances <

a c

b d

a c

b d
ρ,a2

ρ+a2 ρ-a2a2 ~ 1 + exp(i π α(t))

ρ ~ 1 - exp(i π α(t))



analyticity in 
 complex  
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T. Regge 

“force” <duality>“particle”
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• Dual models (Veneziano) A(s, t) =
�(1� ↵(s))�(1� ↵(t))

�(2� ↵(s) + ↵(t))

A(s, t) =
X

k

�k(t)

k � ↵(s)
=

X

k

�k(s)

k � ↵(t)

2

s1 s2 s3 s4 s5 s6 s

l

1

2

3

4

5

leading 1st 2nd 3rd

FIG. 1: Spectrum in the s-channel of the generalized
Veneziano amplitude model of Eq. 1. The leading and daugh-
ter Regge trajectories are marked by thin solid lines and res-
onances by dots at integer values of spin (l). The dashed
and dotted thick lines illustrate resonance contributes to in-
dividual amplitudes, A2,1 and A4,3, respectively. All (infinite
number) of resonances on and to the right of the dashed line
contribute to A2,1, while resonances on and to the right of the
dotted line contribute to A4,3.

leading trajectory and from all subsequent daughter tra-
jectories. The amplitudes A

n,2 have poles originating
from the the 1st daughter and all subsequent daughters,
A

n,3 from the 2nd and all higher daughters, etc. Thus we
can use m to label Regge trajectories and define,

↵(m)(s) ⌘ ↵(s)� (m� 1) (6)

so that ↵(1)(s) ⌘ ↵(s) corresponds to the leading trajec-
tory, ↵(2) the 1st daughter and so on. The spectrum is
illustrated in Fig. 4. For fixed-t, the asymptotic behavior
of A

n,m

(s, t) at large-s reflects presence of resonances in
the crossed channel. Using Stirling’s formula one finds,

A
n,m

(s ! 1, t) / 1

s
�(n� ↵

t

)s↵
(m)(t) (7)

For large-s the tensor factor in Eq. 1 is proportional to s
and the full amplitude has the expected Regge limit,

A(s, t, u) / s↵(t) (8)

arising from the leading, m = 1 trajectory. The signature
factor will be discussed later.

III. REMOVAL OF POLES

As described in the preceding section, an amplitude
A

n,m

with fixed n and m contains an infinite number of
poles in a two-body channel it describes. Since produc-
tion of resonances is process dependent it is necessary to

find a generalization of the amplitude that allows for the
residues to be process dependent. One possibility is to
use a linear combination

A
n,m

(s, t) ! A(s, t) =
X

n�1,nm1

c
n,m

A
n,m

(s, t) (9)

The coe�cients c
n,m

need to be chosen in such a way
that A’s only couples to resonances that contribute to
the process in question. For example, in the case of an
isoscalar boson strongly coupled to three pions, isospin
conservation demands each pair of pions be produced in
isospin-1. Bose statistics then eliminates all spin-even
resonances in s t and u channels of this reaction.
One way to proceed is to construct linear combinations

of amplitudes A
n,m

that eliminate all, but selected par-
tial waves and then take linear combinations of partial
waves. Alternatively one can attempt data analysis with
a finite number of linear combinations of the A

n,m

’s and
let the fit to data determine coe�cients c

n,m

[? ]. We
find the former more appealing for several reasons. First
of all, when studying resonance properties one is forced
to work with partial waves. Proper description of reso-
nances, however, requires that unitarity is satisfied and
Regge trajectories are non-linear, while the Veneziano
model forces Regge trajectories to be real and linear.
Even though there are extensions of the Veneziano model
allowing for non-linear trajectories, implementation of
unitarity is much simpler at the level of partial waves.
We therefore need to be able to isolate partial waves.
Using the Veneziano amplitudes as building blocks, how-
ever, we will be able match the low-energy behavior of
partial waves with the asymptotic high-energy limit de-
termined by Regge poles. This is important as it provides
a constraint on data analysis that extends beyond what
resonances alone can fix.
Since each A

n,n

amplitude contains an infinite number
of poles, in order to cancel all, but a finite number of
poles an infinite number of coe�cients c

n,m

’s in Eq. 9
must be non vanishing. It is not di�cult to find a rela-
tion between the coe�cients, which decouples all, but a
finite number of poles. Consider, for example, keeping
only the pole at ↵(s) = 1 i.e. at s = s1. This pole is
only present in the amplitude A1,1 since amplitudes with
n > 1 have the lowest pole at s

n

> s1. There is only
one amplitude A1,m = A1,1 so a single coe�cient c1,1 de-
termines coupling to the pole at s = s1. The amplitude
A1,1, however, also has poles at higher masses located
at ↵

s

= 2, 3, · · · with residues that are polynomials in
t of the order of 1, 2, · · · , respectively. If we only want
to keep the pole at ↵(s) = 1, these higher mass poles
of A1,1 have to be canceled by similar poles present in
amplitudes with n > 1.
The pole in A1,1 at ↵

s

= 2 can only by canceled by the
same pole in the two amplitudes A2,m, m = 1, 2 since for
n > 2 no other A

n,m

has this pole. The amplitudes A2,1

and A2,2 are polynomials in t of the order of O(1) and
O(0) respectively. We can therefore uniquely determine
two coe�cients, c2,1 and c2,2 in terms of c1,1 so that the

s

Re α(s)

Re α(s) = a + b s

ρ(770)

ρ(1450)

ρ(1570)

ρ3(1690)

ρ (1900)

ρ3(1990)

ρ (2150)

ρ3 (2250)

ρ5 (2350) Regge/Resonance duality

Can be generalized to 
any number of  

external particles 

Can be extend to 
satisfy Mandelstam 

duality, but not known 
extensions to several 

trajectories



Early ideas about the origin of confinement 

“One-gluon” exchange

p

G
lu

on
 p

ro
pa

ga
to

r

1/p2

 ~1/p4  needed for 
linearly rising potential 

G(0) = finite 

L = 20 fm !

Landau gauge 
gluon propagator

A.Cucchieri, et al.

Not compatible with current understanding (in terms of 
condensation of chromo-magnetic charges)   



Strong, theoretical evidence (lattice) for 
gluon field excitations in hadron spectrum 

Phenomenologically, gluons behave as axial 
vector, quasiparticles JPC=1+-

Lowest multiplet of “hybrid mesons” has  
JPC = 0-+, 1-+, 2-+, 1-- states

Can these be detected and distinguished ? 
What about other non-quark model possibilities ?



In QED  “bare particle” ~ observed particle 

but in QCD e  > 1

the nature of physical 
quarks and gluons 
remains a mystery 

HQED  = Hc.h.o. + eV 

|electron> = 
e ~ 0.3

|bare electron>  eV|bare electron>
+ + O(e2) 

inverse distance between quarks

e Q
C

D
 ~

 1
0 

e Q
ED

 

“free” quarks

quarks 
bound  

in 
hadrons



Type-II supper conductor

Dual Type-II supper conductor

condensate of 
electric charges 

electric current 
screens magnetic lines 

condensate of 
magnetic charges 

magnetic current 
screens electric lines 

QED QCD

in “empty vacuum” 

in “magnetic 
condensate”

Monopole confinement 
scenario



The QCD vacuum is not 
empty. Rather it contains 
quantum fluctuations in 
the gluon field at all 
scales. (Image: 
University of Adelaide)

Monopoles and vortices have been 
long speculated to be candidate 
gluon field configurations responsible 
for confinement 

HQCD  = Hc.h.o. +   non-linear 

“physical gluons” 
→ mean filed AND 
quasi particles 

“physical quarks” →  
quasi particles in gluon mean filed 

Plausible scenario:
finite energy, localized solutions: 
solitons (monopoles, vortices , ...)

gluon mean 
filed 

“Can we quantitatively understand quark and gluon 
confinement in quantum chromodynamics and the 
existence of a mass gap” (in 10 Physics Questions to Ponder for 

a Millennium or Two)



Y(4260)

BaBar (2005) CLEO(2006)

(2007) (2005)

M = 4252± 6+2
�3MeV

� = 105± 18+4
�6MeV

Theory: Hybrid candidate

discovered by BaBar in J/ψ π+π- (2005) confirmed by CLEO,Belle other modes from BaBar
JPC=1-- (from e+e-)  width O(100MeV)

PANDA@FAIR



Why is QCD special ?  

ü    Predicts existence of  exotic 
matter, e.g. made from radiation (glue 
balls,hybrids) or novel plasmas. 

ü It builds from objects (quarks and gluons) 
that do not exist in a common sense, 
>95% mass comes from interactions!

ü     A single theory is responsible for 
phenomena at distance scales of the order of 
10-15m  as well as of the order 104m.

ü   A possible template for 
physics beyond the Standard 
Model

Quantum Chromodynamics (QCD) = physics of quarks and gluons 


