QA tests of the CBM Silicon Tracking System sensors with an infrared laser

Maksym TEKLISHYN for the CBM Collaboration

FAIR, Darmstadt; KINR, Kyiv

March 14, 2016

Introduction

Silicon Tracker System design:

- Detector acceptance
 - rapidities from centre-of-mass to beampipe
 - ▶ angular coverage $2.5^{\circ} < \Theta < 25.0^{\circ}$
- Low mass large area detector
 - readout electronics away from the acceptance
 - ▶ double sided 300 µm thick silicon sensors (8 stations)
 - material budget $\simeq 1\% X_0/\text{station}$
 - low scattering, high momentum resolution
 - track matching in MVD and RICH/MUCH

• See A. Lymanets, Mo HK15 talk for more details

- $\Delta p/p \simeq 1.5\%$
- up to $\simeq 25\,\mu m$ single hit resolution

Microstrip sensor prototypes

- Double-sided n-type silicon sensors
 - ▶ $58\,\mu{
 m m}$ pitch
 - ▶ 1024 strips per sensor
 - AC-coupling, aluminium strips
 - 7.5° stereo angle for p-side (suppression of the ghost track rate)
- Sensor inside a sandwich PCB frame:

- $\bullet~$ radiation tolerance up to $10^{14}\,n_{\rm eq}/cm^2$
- signal transfer to r/o electronics by microcable (polyimide $10 \,\mu\text{m}$, aluminium $14 \,\mu\text{m}$ thick)

Charge collection in the sensor medium interaction with MIP

- MIP (Minimum Ionising Particle) penetrates silicon sensor
- Deposited charge drifts along \vec{E} field to the electrodes

Charge collection in the sensor medium interaction with MIP

- MIP (Minimum Ionising Particle) penetrates silicon sensor
- Deposited charge drifts along \vec{E} field to the electrodes

- $\Delta E = 3.79 \pm 0.01 \,\mathrm{eV}$ per one e-h pair got from
 - [C. Bussolati et al. Phys. Rev. 136, A1756]
- Δ_p is found for 300 $\mu {
 m m}$ silicon
- $\Delta_p \simeq 23 \times 10^3$
- this value depends on many input parameters

Charge collection in the sensor medium

interaction with (infra)red laser

 $\simeq 300 \, \mu \mathrm{m}$

- (Infra)red laser can be used to mimic MIPs
- Deposited charge drifts along \vec{E} field to the electrodes

 $58 \,\mu m$

• Silicon absorption depth

[Green MA, Keevers MJ. 1995;3:189 - 192.]

▶ red light (660 nm)

 $4\,\mu\mathrm{m}$

▶ infrared light (1060 nm) 901 µm

Charge collection in the sensor medium

interaction with (infra)red laser

- (Infra)red laser can be used to mimic MIPs
- Deposited charge drifts along \vec{E} field to the electrodes

- Laser:
 - ▶ infrared 1060 nm
 - triggered by external puls generator
- Focuser:
 - focusing distance $10 \pm 1 \,\mathrm{mm}$
 - beam size $12 \pm 2 \,\mu \mathrm{m}$
- Step motor
 - controlled by EPICS
 - \blacktriangleright positioning precision $\simeq 1\,\mu{\rm m}$
- Data acquisition
 - DABC over optical channel (ver. 2012)
 - GO4 online monitoring

Laser test stand

- Constructed for studies of the sensor properties with a laser
- Sensor + readout + laser in a light tight box
- Readout controllers additionally shielded

Laser test stand scheme

External triggering system

Positioning system

• Vertiacal positioning is manual

- Automated X/Y positioning
- $\bullet~{\rm Accuracy}~{\rm up}~{\rm to}~1\,\mu{\rm m}$
- Scanning along predefined pattern with EPICs based software

Online monitor and data processing

- Charge sharing between neighbouring strips
- Focusing is complicated with manual z-positioning
- External trigger forces to r/o all 128 channels per pulse

Conclusions and outlook

- Infrared laser is a good tool to test silicon sensor prototypes
- Red laser may be used for cross-check/surface effect studies
- Laser test stand is ready for operation
- Application of the external triggering allows go deep below the noise

Things we still missing:

- Motorised z-positioning for the focusing purposes
- Online feed-back from data stream for the pattern correction:
 - misalignment correction
 - automatic focusing
- Remote control for hardware components: bias voltage, pulse generator...
- Automatise the procedure for the QA during the mass production

