

Poster Prize

the poster prize is kindly supported by

A New Way of Cooling Technique for the Super-FRS Slit System

J. Gellanki, N. Kalantar-Navestanaki, O.J. Kuiken, M.F. Lindemulder, C. Nociforo, C. Rigollet, H.A.J. Smit.

Introduction

• The slit systems for x and y positions will be used as collimator for stopping the unwanted charge states of primary beam and fragments produced at the reaction target of the inflight Superconducting Fragment Separator (Super-FRS) at

Details of the x and y slits • 2 x slits 2 v slits ◆ Q_{max}~ 500 W MS: 4 7 x slits ◆ 3 y slits ♦ Q ~ 50 W Overview of the Super-FR

the FAIR facility, Darmstadt.

Thermal simulations on x-slit system

◆ Proposed Material: Densimet (97% W, 2% Ni and 1% Fe) ◆ Heat Dissipation: Radiation

Steady-state simulations

heat load point

T = 550 °C on the block

Surface emissivity effect on the densimet temperature Emissivity of densimet 0.07(pure) Temp. at the heat load 407 point in °C

- Densimet cooling by water as a coolant ◆ Applied Q = 500 W on the front surface of the densimet block
- ◆ T ~ 180 °C at the heat load point with water cooling

Problems: 1. Radioactive water preservation.

2. Difficulties in handling water leaks and/or a broken pipe during experiments

slit system

 40 hours are required to re for an applied power of 50

With an initial temperature 100 hours to cool down to

Densimet cooling b

- ◆ Applied Q = 500 W on the
- Surface emissivity of SS i
- ◆ T ~ 450 °C at the heat I

♦ No active cooling is neede

A new way of passive coo the temperature of the blo

Detector Development for the CBM Time-of-Flight Wall in Heidelberg

I. Deppner[†], Prof. N. Herrmann, P.A. Loizeau, C. Simon, V. Zinyuk

The CBM detector

Setup in the lab @ Heidelberg

Testbeam Setup at GSI

Multi-gap RPC characteristics

● Time resolution < 50 ps
This → is the distance light travels within 50ps!

- Efficiency > 97 %
 Rate capability ~ 1kHz/cm²
- Gap size: 220 μm
- Active area: 53 x 52 cm² Spatial resolution ~ 5 mm

Activities at PI Heidelberg: Development of: Multi-gap Resistive Plate Chambers (MRPCs) (Hardware)

- Simulation framework for the TOF detector (Software) More realistic simulation tools to simulate the RPC response in the CbmRoot framework (Software)
- Electronics chain implementation for RPCs (Hardware/Software)
- Design of the CBM TOF wall

Results of the Prototype Testing:

RPC system. $\sigma = (67.2 \pm 0.0)$

Applied high voltage	±10.2 kV	±11.0 kV
Efficiency	(94.4 ± 0.2) %	(98.5 ± 0.1) %
RPC time resolution	(43.5 ± 1.2) ps	(39.0 ± 1.0) ps
Mean cluster size	1.24	1.39
Mean cluster multiplicity	1.26	1.26

Future Projects

- In beam evaluation of the full electric read-out chain.
- Closed-loop gas system for MRPCs .
- Particle identification in high rate experiments without trigger .
 - Reconstruction of anti-protons below production threshold .

† deppner@physi.uni-heidelberg.de

Charge states distribution for the Au²⁶⁺ ions after a plasma stripper

G. Xu, J. Jacoby, Y. Zhao, G. Xiao, G. Loisch, T. Rienecker, A. Fedjuschenko, K. Cistakov, A. Blazevic, K. Weyrich, O. Rosmej, R. Cheng, J. Ren, A. Schönlein, J. Wiechula, T. Manegold, A. Kutschireiter, S. Zähter, R. Maeder, O. Haas, M. Iberler

Motivation

The interaction of heavy ions with plasma is important for research in a field like warm dense matter (WDM), laboratory astrophysics and inertial confinement fusion (ICF), where the high repetition rate of ion-beam pulses are of an advantage as a driver. Also applications like using the plasma as an efficient beamstripper are of importance with respect for the future Facility for Antiproton and Ion Research (FAIR).

Plasma shape ion beams is assumed to be Q_n = 4;

s with a plasma stripper cell

1H2 eas and H plasma

arge η, W, for the 34 μF (left plot) sics of Plasmas 19, 033505 (2012).

end on the free electron density

Upgrade the device to obtain the electron density above 1017 cm-3 . Increase the operation voltage from 18 kV to 25 kV;

Enlarge the proportion of the reflected plasma resistance R.

Poster Prize

Jnaneswari Gellanki - Groningen
A New Way of Cooling for the Super-FRS slit system
Ingo Deppner - Heidelberg
The Time-of-Flight System of the CBM-Experiment
Ge Xu - Frankfurt
Charge State Distribution for Bi²⁶⁺ and Au²⁶⁺
after a plasma stripper

the poster prize is kindly supported by

