Finding the needle in the haystack: a charmonium trigger for the CBM experiment

T. Ablyazimov^{1, 2} t.ablyazimov@gsi.de, V. Friese¹ v.friese@gsi.de, V. Singhal³ vikas@vecc.gov.in ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ²LIT, Joint Institute for Nuclear Researches, Dubna, Russia ³Variable Energy Cyclotron Centre, Department of Atomic Energy, Government of India

The Compressed Baryonic Matter experiment (CBM) at FAIR Goal

Muon Chamber (MUCH)

To study the QCD phase diagram at high net baryon densities and moderate temperatures.

SIS100 collision energies 2÷11 AGeV

Physics observables

Rare probes: strange hadrons, charm hadrons, light vector mesons (rho, omega, phi), J/ψ mesons

J/ψ mesons

- front of each station for hadron background suppression
- \sim Charmonium (J/ ψ mesons) is one of the most interesting observables for the CBM experiment
- Signal yield less than one in a million collisions
 - Interaction rate up to 10 MHz
 - Raw data rate up to 1 TB/s
 - Storage rate is several GB/s
 - Triggering software needed
 - ✓ The decays $J/ψ → μ^+μ^-$ can be triggered with the MUCH detector

General scheme

- Triggering is based on standalone track reconstruction in MUCH
- Linear model for tracks
- Tracks close to straight lines going from the target center
- Multiple scattering is accounted from an assumption for the initial energy
- Highland formula for the multiple scattering
- Bethe-Bloch formula for energy losses
- Track reconstruction take time measurement into account
- Triggering criteria are applied to the reconstructed tracks

Highland formula:

$$\Theta_{0} = \frac{13.6 \text{MeV}}{\beta pc} z \sqrt{\frac{l}{X_{0}}} \left[1 + 0.038 \ln \frac{l}{X_{0}} \right] \qquad \left(\frac{dE}{dx} \right) = -Kz^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{max}}{I^{2}} - \beta^{2} - \delta \frac{(\beta \gamma)}{2} \right]$$

Bethe-Bloch formula:

Track reconstruction

Station 1 Station 2 Station 3 Station 4

- Reconstruct tracklets w/o TRD hits
- Verify them with tracklets in TRD

Building tracklets w/o TRD hits

- Asymmetric cellular automaton (CA) algorithm
- 'Cells' are segments of straight lines connecting hits on adjacent stations

Asymmetric CA

- Build straight line segments
- Find segment chains connecting the
- last station with the first
- ✓ In chain trees starting on the last station select the chain with the least χ 2

TRD tracklet verification

- Extrapolate reconstructed tracklet to the 1st and 2nd TRD layers
- Draw lines through all combinations of hits on these layers
- ✓ If there are hits in the vicinity of one of these lines on both 3rd and 4rd layers the tracklet is verified

Algorithm performance optimization

- Detecting station is a manifold in XY and Time (XYT) space
- Approximated with a rectangle
- The station rectangle is subdivided to smaller XYT bins
- Inspired by the bin sort algorithm
- Each bin contains only a very limited number of hits
- Composition and searches are extremely fast

Triggering criteria

- Two reconstructed tracks
- They belong to particles with different electric charge signs
- The angle between them exceeds a certain limit

Two tracks

Must be a pair of tracks with different estimated charges

The angle between tracks must exceed a certain limit. This is a consequence of the relativistic formula

✓ For signal triggering efficiency tests: one PLUTO J/ ψ → $\mu^+\mu^-$ decay for an event + central Au+Au@10AGeV central collision (URQMD)

Conclusion

- For background suppression tests: minimum bias Au+Au@10AGeV collisions (URQMD)
- Background event reconstruction time: 4 μs
- Signal triggering efficiency: 83%
- Event suppression factor: 1/3800
- Data suppression factor: 1/1700

J/ψ trigger can be implemented with MUCH

