Charge collection studies of silicon microstrip sensors for the CBM Silicon Tracking System.

levgeniia Momot, Goethe University Frankfurt, for the CBM Collaboration i.momot@gsi.de

The Compressed Barionic Matter experiment (CBM) at FAIR

Goal

- To study the QCD phase diagram at high net baryon densities and moderate temperatures.
- SIS100 collision energies 2÷11 AGeV

Physics observables

- Differential cross-sections
- diagnostic probes: strange mesons, light vector mesons (ρ , ω , φ)

Silicon Tracking System (STS)

- 8 tracking stations
- double-sided silicon microstrip sensors
- sensor sizes 6x2, 6x4, 6x6, 6x12 cm²
- stereo angle front-back sides 7.5°
- \sim momentum resolution ($\Delta p/p \sim 1 \%$)
- 25 μm hit spatial resolution
- \sim material budget $\sim 1 \% X_0$ per station
- \sim radiation tolerance up to $1x10^{14} \, 1MeV \, n_{eq} \, cm^{-2}$
- S/N > 10 for the hit reconstruction efficiency ~ 98 %

Aim of the studies

Prototype of sensor with Double Metalization layer (DM)

Prototype of sensor with Microcable (SMwC)

- \sim Test radiation tolerance up to $2x10^{14}$ n_{eq} cm⁻²
- Choose the appropriate technology for the routing line
- Compare sensors from two vendors

Sensors under test

- p-n-n structure sensors
- sensor sizes 6x6 and 6x4 cm²
- 1024 strips per side (58 μm pitch)

Microscopic view the sensor edge (DM)

Schematic view

- ✓ n side 0° strips, p side stereo angle 7.5°
- \sim neutron irradiation to $2x10^{14} \, n_{eq} \, cm^{-2}$

Interconnection schemes

- I. Double metalization (DM)
 - each strip is connected to its partner on the opposite end with a second metal layer
- II. Interstrip cables on the top of the sensor (SMwC) routing lines are made by the microcables on the top of the sensor

Set-up in the STS lab

DUT connected to the r/o electronics

Experimental set-up

Sensors tested for electrical test and charge

collection with ⁹⁰Sr (β-source)

Sensors with different type of interconnection scheme were selected:

CBMU-	Size, cm x cm	i nickness, µm	type	V _{fd} ,V
6H6-W29	6x6	327	SM	70
6H6-W28	6x6	331	SMwC	75

ALIBAVA read-out system:

- 128 r/o channels
- ALIBAVA r/o system comprises Mother Board and Daughter Board (2 Beetle-128 chips) 256 r/o channels
- Temperature monitoring

Sensor with different read-out bonding patterns

2. Two strips from sensor

connected to one read-out

1 group, 128 connected strips, 64 r/o

- ✓ To find out how different r/o connection may influence on collected charge, three schemes were tested: the same sensor, only long strips, all 256 r/o channels were used.
- Measurements were done in the same conditions under temperature monitoring.

(connection scheme #2 with r/o only every second channel)

- Noise level for different connections
- Only events >3σ were selected, edge strips removed from analysis
- ✓ Noise is differs in range of 10 %
- Absence of distinctions in charge collection and S/N will allow to use less r/o channels → less electronics

Preliminary results:

	Noise ± Err, ADC	MPV 1_strip ± Err, ADC	MPV 2_strip ± Err, ADC	MPV Σ ± Err, ADC
1 ↔ 1	2.57 ± 0.05	59.76 ± 0.38	73.81 ± 0.45	70.25 ± 0.77
2 →1	3.05 ± 0.05	60.45 ± 0.03	76.0 ± 0.22	67.0 ± 0.36
1 omit	2.28 ± 0.04	60.2 ± 0.48	57.88 ± 1.47	60.49 ± 1.33

Charge collection test results event #10, 2-cluster (S/N=15.1)

Signal from Sr⁹⁰ fitted Landau-Gauss convolution

- Two sensors with different connections were tested: S/N for both ≥ 15
- Similar charge collection at 150 V: SmwC 77.8 ± 0.2 ADC, $76.3 \pm 0.2 \text{ ADC}$ SM

Further studies

- Characterize more sensors from different vendors and two types of routing lines
- Characterize sensors after irradiation
- Compare measurements with nXYTER r/o system

