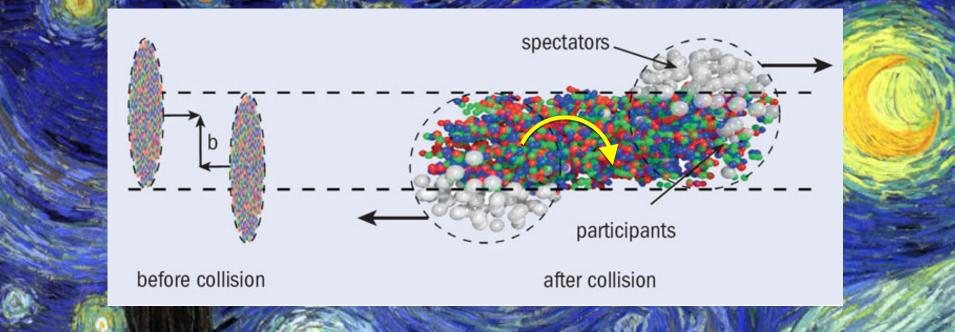
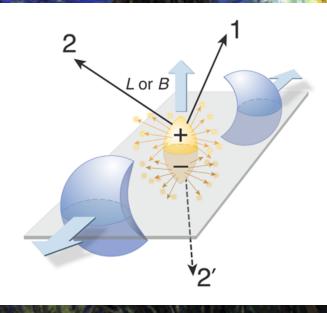
Global polarization of Lambda hyperons in Au+Au Collisions at RHIC BES

STAR


STAR

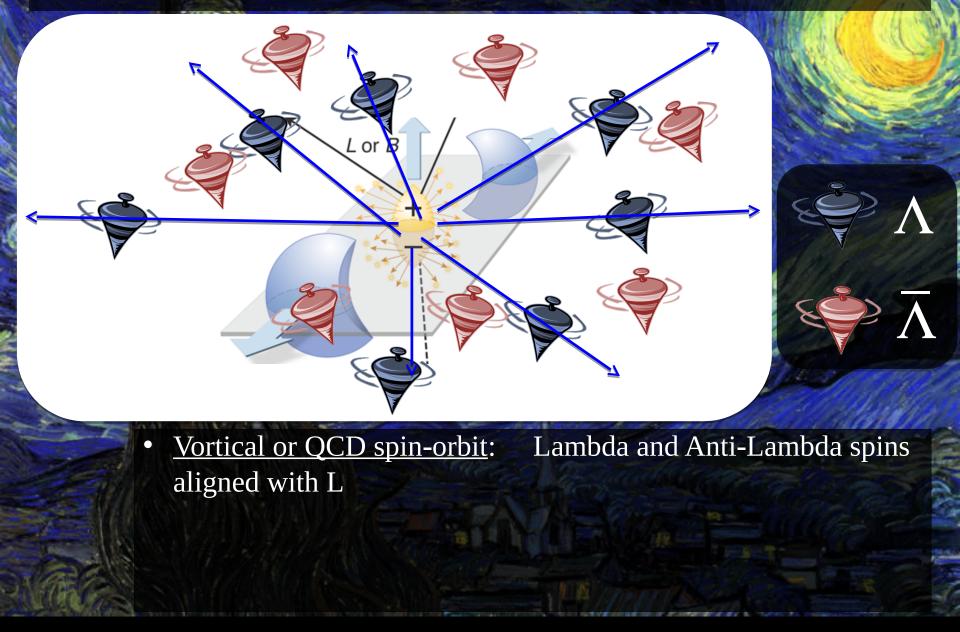

STAR

STAR

Isaac Upsal (OSU) For the STAR collaboration 03/18/17

STAR

|L| ~ 10³ ħ in non-central collisions
How much is transferred to particles at mid-rapidity?
Does angular momentum get distributed thermally?
Does it generate a "spinning QGP?"


consequences?

How does that affect fluid/transport?

Vorticity: \$\vec{\omega} = \frac{1}{2}\$\$\$\vec{\nbox}\$\$ ×\$\$\$\$\$\$\$\$\$\$

How would it manifest itself in data?

Vorticity → Global Polarization

Magnetic field → Global Polarization

or

Both may contribute

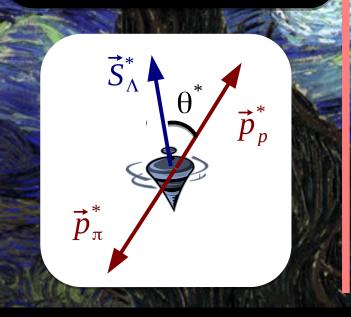
• <u>(electro)magnetic coupling</u>: Lambdas *anti*-aligned, and Anti-Lambdas aligned

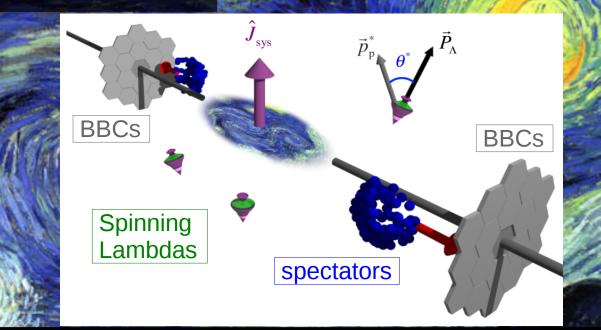
Barnett effect

Nice correspondence in Barnett effect
BE: uncharged object rotating with angular velocity ω magnetizes

M=χω/γ

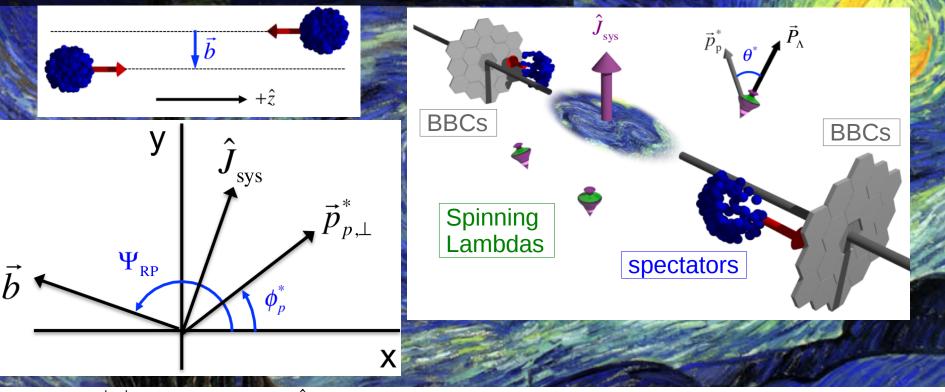
γ = gyromagnetic ratio,


χ = magnetic susceptibility


Spins align with vorticity \rightarrow B field

Barnett Science 42, 163, 459 (1915); Barnett Phys. Rev. 6, 239–270 (1915)

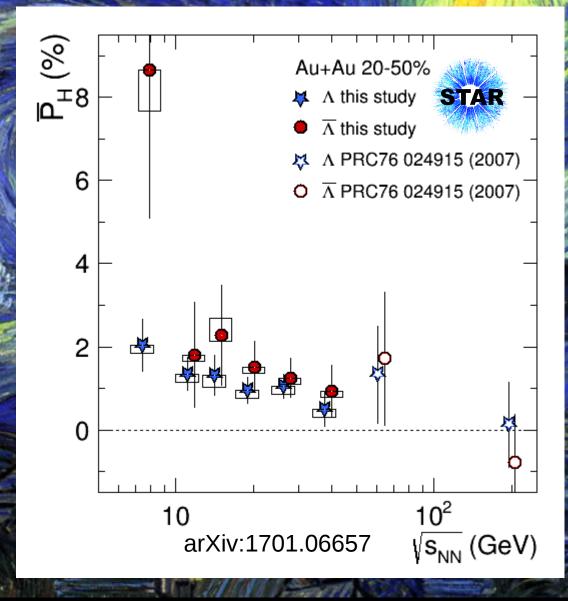
How to quantify the effect (I)


- Lambdas are "selfanalyzing"
 - Reveal polarization by preferentially emitting daughter proton in spin direction

As with Polarization \vec{P} follow the distribution: $\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \, \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha \, P \cos \theta^* \right)$ $\alpha = 0.642 \pm 0.013 \quad \text{[measured]}$ $\hat{p}_p^* \text{ is the daughter proton momentum direction$ *in* $}$ *the* A *frame* (note that this is opposite for $\overline{\Lambda}$) $0 < |\vec{P}| < 1; \quad \vec{P} = \frac{3}{\alpha} \, \overline{\hat{p}_p^*}$

How to quantify the effect (II)

Symmetry: $|\eta| < 1$, $0 < \phi < 2\pi \rightarrow ||\hat{L}|$

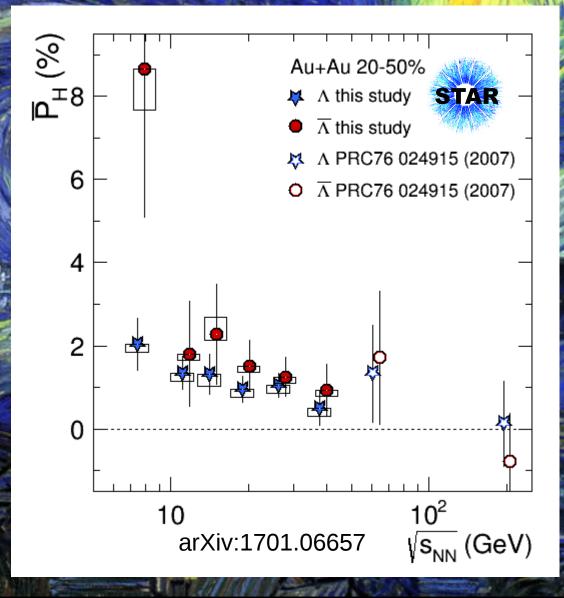

Statistics-limited experiment: we report acceptance-integrated polarization, $P_{\text{ave}} \equiv \int d\vec{\beta}_{\Lambda} \frac{dN}{d\vec{\beta}_{\Lambda}} \vec{P}(\vec{\beta}_{\Lambda}) \cdot \hat{L}$

 $P_{AVE} = \frac{8}{\pi \alpha} \frac{\langle \sin(\varphi_{\hat{b}} - \varphi_{p}^{*}) \rangle}{R_{EP}^{(1)}} ** \text{ where the average is performed over events and } \Lambda \text{ s}$ $R_{EP}^{(1)} \text{ is the first-order event plane resolution and } \varphi_{\hat{b}} \text{ is the impact parameter angle}$ $** \text{ if } v_{1} \cdot y > 0 \text{ in BBCs } \varphi_{\hat{b}} = \Psi_{EP}, \text{ if } v_{1} \cdot y < 0 \text{ in BBCs } \varphi_{\hat{b}} = \Psi_{EP} + \pi$

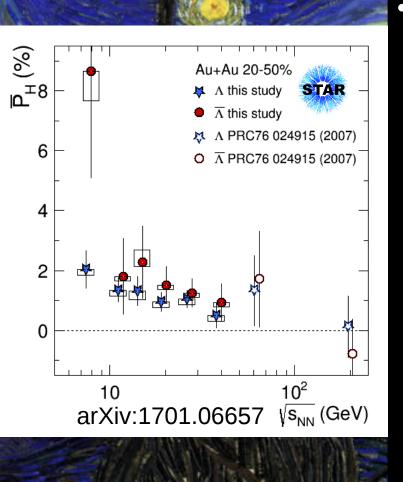
Isaac Upsal – March 2017

Global polarization measure

- Measured Lambda and Anti-Lambda polarization
- Includes results from previous STAR null result (2007)
- $\overline{P}_{H}(\Lambda)$ and $\overline{P}_{H}(\overline{\Lambda})$ >0 implies positive vorticity
- $\overline{P}_{H}(\overline{\Lambda}) > \overline{P}_{H}(\Lambda)$ would imply magnetic coupling



Global polarization measure


Measured Lambda and Anti-We can study more fundamental properties
of the system

previous STAR null result (2007)

- $\overline{P}_{H}(\Lambda)$ and $\overline{P}_{H}(\overline{\Lambda})$ >0 implies positive vorticity
- $\overline{P}_{H}(\overline{\Lambda}) > \overline{P}_{H}(\Lambda)$ would imply magnetic coupling

Vortical and Magnetic Contributions

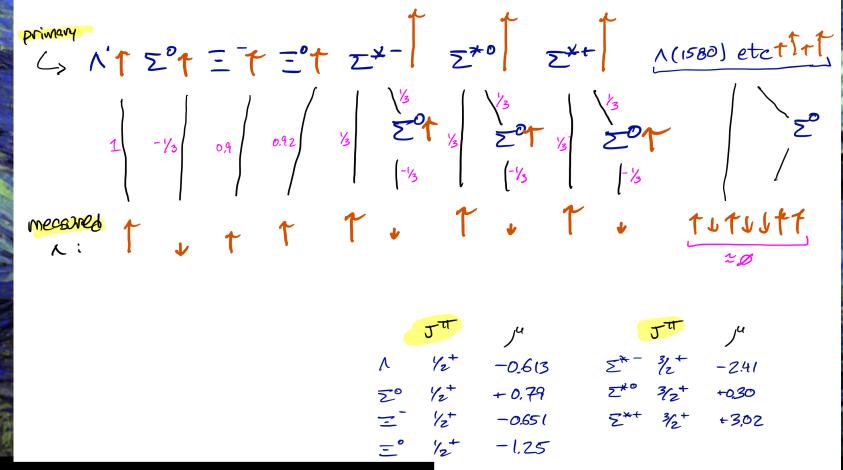
- Magneto-hydro equilibrium interpretation $P \sim \exp\left(-E/T + \mu_B B/T + \vec{\omega} \cdot \vec{S}/T + \vec{\mu} \cdot \vec{B}/T\right)$
 - for small polarization:

$$P_{\Lambda} \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T} \qquad P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

- vorticity from addition: $\frac{\omega}{T} = P_{\overline{\Lambda}} + P_{\Lambda}$
 - B from the difference:

$$\frac{B}{T} = \frac{1}{2\mu_{\Lambda}} (P_{\overline{\Lambda}} - P_{\Lambda})$$

**
$$\hbar = k_B = 1$$


But even with topological cuts, significant feeddown from Σ^0 , $\Xi^{0/-}$, $\Sigma^{*\pm/0}$ which themselves will be polarized... Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506

PRIMARY + FEED-DOWN POLARIZATION VORTICAL COMPONENT

Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506

PRIMARY + FEED-DOWN POLARIZATION VORTICAL CONPONENT

Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506

Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506

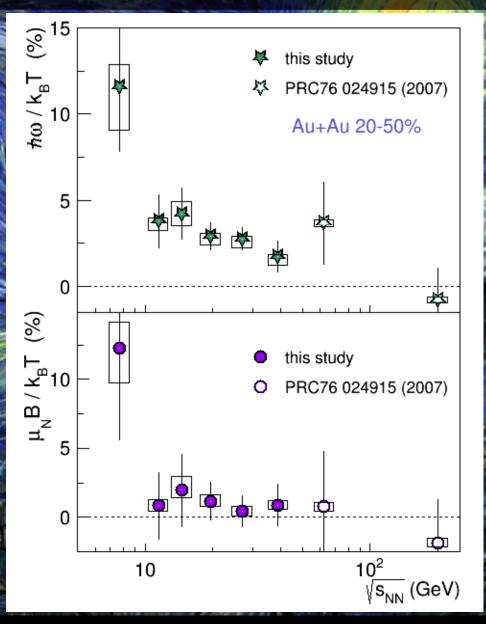
 $-f_{\Lambda R}$ = fraction of Λ s that originate from parent $R \rightarrow \Lambda$

- $C_{\Lambda R}$ = coefficient of spin transfer from parent *R* to daughter Λ
- S_R = parent particle spin
- $-\mu_R$ is the magnetic moment of particle R
- overlines denote antiparticles

Decay	C
parity-conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
parity-conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
parity-conserving: ${}^{3}/{}^{2}^{+} \rightarrow {}^{1}/{}^{2}^{+} 0^{-}$	1/3
parity-conserving: ${}^{3/2}_{2}^{-} \rightarrow {}^{1/2}_{2}^{+} 0^{-}$	-1/5
$\Xi^0 \to \Lambda + \pi^0$	+0.900
$\Xi^- ightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 \to \Lambda + \gamma$	-1/3

TABLE I. Polarization transfer factors C (see eq. (31)) for Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506

$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ &$

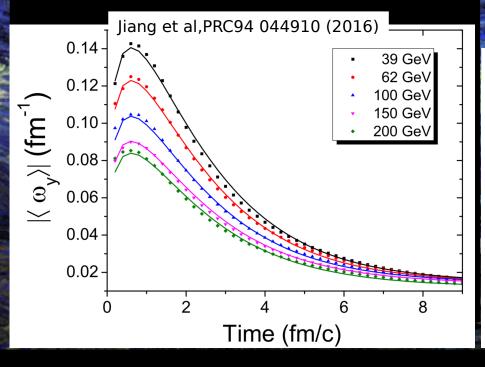

From THERMUS

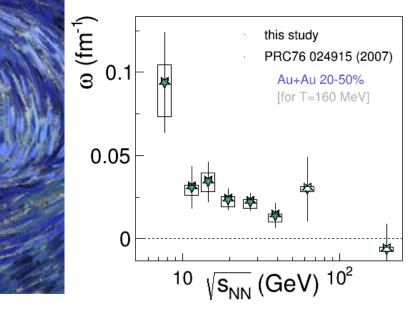
Extracted Physical Parameters

- Significant vorticity signal
 - Hints at falling with energy, despite increasing J_{collision}
 - 6 σ average for 7.7-39GeV

 $= P_{\Lambda_{\text{primary}}} = \frac{\omega}{2 T} \sim 5\%$

- Magnetic field
 - $-\mu_N$ = nuclear magneton
 - positive value, 2σ average for7.7-39GeV


Vorticity ~ theory expectation


• Thermal vorticity:

$$\frac{\omega}{T} \approx 2 - 10\%$$

 $\omega \approx 0.02 - \overline{0.09 \, \text{fm}^{-1}}$ (T_{assumed} = 160 MeV)

 Magnitude, √s-dep. in range of transport & 3D viscous hydro calculations with rotation

Csernai et al, PRC**90** 021904(R) (2014) TABLE I. Time dependence of average vorticity projected to the reaction plane for heavy-ion reactions at the NICA energy of $\sqrt{s_{NN}} = 4.65 + 4.65$ GeV.

t (fm/c)	Vorticity (classical) (c/fm)	Thermal vorticity (relativistic) (1)
0.17	0.1345	0.0847
1.02	0.1238	0.0975
1.86	0.1079	0.0846
2.71	0.0924	0.0886
3.56	0.0773	0.0739

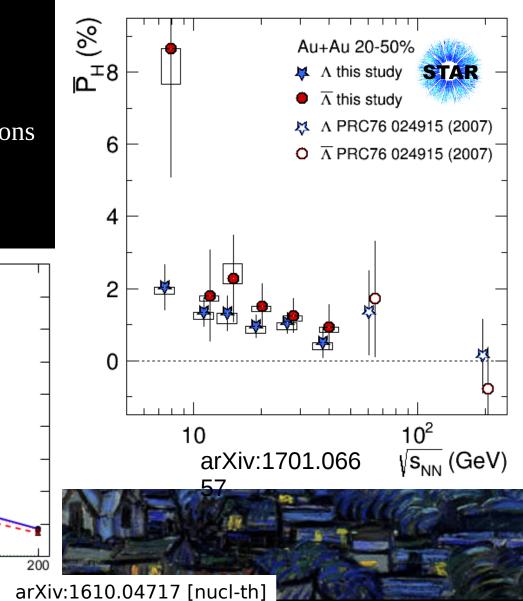
BES ~ theory expectation

- 3+1D viscous hydrodynamics
 - Not very sensitive to shear viscosity
 - Very sensitive to initial conditions

Au-Au, 20-50% central

 P_J^*

 P_h^*


19.6

39.0

 $\sqrt{s_{\rm NN}}$ [GeV]

62.4

• Expectation: falling with \sqrt{s}

0.018

0.016

0.014

0.012

0.010

0.008

0.006

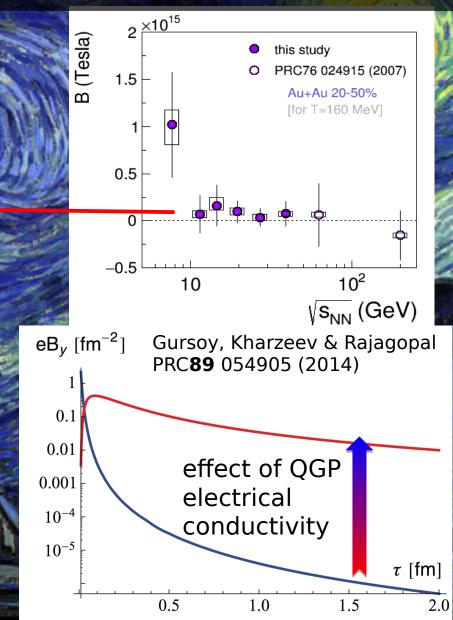
0.004

0.002

0.000

77

Å,


B-Field ~ theory expectation

Magnetic field:

• Expected sign

 $B \sim 10^{14}$ Tesla $eB \sim 1 m_{\pi}^2 \sim 0.5 \, fm^{-2}$

- Magnitude at high end of theory expectation (expectations vary by orders of magnitude)
- But... consistent with zero
 - -A definitive statement requires more statistics/better EP determination

Summary I

- Non-central heavy ion collisions create QGP with high vorticity

 -generated by early shear viscosity (closely related to initial conditions),
 persists through low viscosity
 - -fundamental feature of *any* fluid, unmeasured until now
 - an incomplete characterization of QGP
 - relevance for other hydro-based conclusions?
- Huge and rapidly-changing B-field in non-central collisions

 not directly measured
 - -theoretical predictions vary by orders of magnitude
 - -sensitive to electrical conductivity, early dynamics
- Both of these extreme conditions must be established & understood to put recent claims of chiral effects on firm ground

Summary II

- Global hyperon polarization: unique probe of vorticity & B-field –non-exotic, non-chiral
 - -quantitative input to calibrate chiral phenomena
- STAR has made the first observation of global Λ polarization -statistics- & resolution-limited: 1-5 σ effect for any given $\sqrt{s_{NN}}$
 - ~6σ effect on average
- Interpretation in magnetic-vortical model:
 - -clear vortical component of right sign, magnitude for $\sqrt{s_{NN}}$ < 30 GeV -magnetic component of right sign, magnitude *hinted at*, but consistent with zero at each $\sqrt{s_{NN}}$
- BES-II: Statistics & upgrades will allow characterization & model discrimination

