5th International Workshop on Future Challenges in
Tracking and Trigger

Vectorizing the geometry library for
simulation

-- experience and results from a prototype
and future directions --

Sandro Wenzel / CERN-PH-SFT

(for the GPU simulation+ Geant-V prototypes)

2 Fermilab R

N\
CERN . %
\ intel) .
EMEA High Performance and Throughput Computing C E R N openlab

NVl

Outline

Part I: Introduction
Very short intro to Geant-V

Part 1l: Prototype phase

A SIMD-vectorized geometry prototype: goals and lessons
learned

Part l1I: VecGeom: current developments

Current developments: A generic high performance
geometry library

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Introduction and recap of status of
many-particle vectorization prototype

with contributions from

Marilena Bandieramonte (University of Catania, Italy)
Georgios Bitzes (CERN Openlab)
Laurent Duhem (Intel)

Raman Sehgal (BARC, India)
Juan Valles (CERN summer student)

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

The Eight performance dimensions

The “dimensions of performance”

0 Vectors (SIMD) Micro-parallelism: gain
In throughput and

0 Instruction Pipelining — in time-to-solution

2 |nstruction Level Parallelism (ILP)

0 Hardware threading

0 Clock frequency
a Multi-core Gain in memory footprint
0 Multi-socket and time-to-solution

— but not in throughput

2 Multi-node

Possibly running different
jobs as we do now is the
best solution

slide by F. Carminati

The Eight performance dimensions

The “dimensions of performance”

0 Vectors (SIMD) Micro-parallelism: gain
In throughput and

0 Instruction Pipelining — in time-to-solution

2 |nstruction Level Parallelism (ILP)

0 Hardware threading

0 Clock frequency
a Multi-core Gain in memory footprint
0 Multi-socket and time-to-solution

_ — but not in throughput
1 Multi-node used by Geant4-MT

(event parall.)
Possibly running different

jobs as we do now is the
best solution

slide by F. Carminati

The Eight performance dimensions

The “dimensions of performance”

0 Vectors (SIMD) Micro-parallelism: gain
In throughput and

—» |In time-to-solution

targeted by Geant-V
0 Hardware threading (track parall.)

0 Clock frequency
a Multi-core Gain in memory footprint
0 Multi-socket and time-to-solution

_ — but not in throughput
1 Multi-node used by Geant4-MT

(event parall.)
Possibly running different

jobs as we do now is the
best solution

2 Instruction Pipelining
2 |nstruction Level Parallelism (ILP)

slide by F. Carminati

Key observation for Geant-V: Classical HEP transport
IS mostly local

« To make use of SIMD microparallelism
we need “data” parallelism: multiple data
on which to operate same instructions

slide by F. Carminati

Key observation for Geant-V: Classical HEP transport Y

IS mostly local

« To make use of SIMD microparallelism
we need “data” parallelism: multiple data
on which to operate same instructions

* benchmarks have shown that in simulation
50 percent of CPU time is spent in small
number of logical volumes of detector

 idea: interleave multiple events in
simulation and group particles by logical
volume = basket of particles

data parallelism in)

a logical volume,;
same geometry code;
shared physics code

“\

10°

10°

ATLAS volumes sorted by transport time. The same = ¥
behavior is observed for most HEP geometries.

TGLU
TBPA
TGL2
XBH1
TBP2
XBS1
XBG1
TBAA
XRAS
XRA4
XRA3
PXBO
XBHO
TBV9
TBVO
XRA2
XGAS
XBST
XRA1
TBVE
ALA3
ALAZ
ALAG
ALAT
ALA1
ALAS
TBVT
ALA4
ALAS
ALA9
XRAD
ALAO
ALADb
ALAa
TBVE
TBV3
TBV4
TMOU
BWA1
TBVS
TMO1
PEM1
BWAT7
BWAS
TBVA

~ S0 percentofthe |
~time spentin 0.7% [
o JOMES

T8Bv1
TBvV2
PBL1
SCTT
BWAG

— _/

slide by F. Carminati

Vectorizing geometry: The problem statement

typical geometry task in particle tracking: find next hitting
boundary and get distance to it

| particle

functionality provided by
existing code (Geant4, ROOT,...)

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Vectorizing geometry: The problem statement

typical geometry task in particle tracking: find next hitting
boundary and get distance to it

| particle vectors of particles
fun.ct.ionality provided by functionality targeted by future
existing code (Geant4, ROOT....) simulation approaches

aim for efficient utilization of
current and future hardware

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Vectorizing geometry: The problem statement

typical geometry task in particle tracking: find next hitting
boundary and get distance to it

| particle vectors of particles
fun.ct.ionality provided by functionality targeted by future
existing code (Geant4, ROOT....) simulation approaches

aim for efficient utilization of
current and future hardware

= prototype study started ~04/2013

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Ist Step: Vector Processing in Elementary
Geometry Algorithms

| particle vector of N particles

l

distFromlInside
mothervolume

l . Milestone
>

distFromlInside
mothervolume

v

N results

| result

O Provide new interfaces to process baskets in elementary
geometry algorithms

O make efficient use of baskets and try to use SIMD vector instructions
wherever possible (throughput optimization)

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

NEXT PARTICLE

IN VOLUME

distFromInside
mothervolume

each particles undergoes a
series of basic algorithms (with

* single particle flow ©uter loop over particles)

pick next
daughter volume

v

transform
coordinates to
daughter frame

v

distToOutside
daughtervol

v

update step +
boundary

Sandro Wenzel

5th International Workshop on Future Challenges in Tracking and Trigger

NEXT PARTICLE

IN VOLUME

R each particles undergoes a

mothervolume

* single particle flow ©uter loop over particles)

pick next
daughter volume

v

transform
coordinates to
daughter frame

2nd step

Each algorithm takes a basket

* of particles and spits out
distToOutside vectors to the next algorithms
daughtervol

v

update step +
boundary

Sandro Wenzel

series of basic algorithms (with

distFromInside
mothervolume

pick next
daughter volume

YEm

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

5th International Workshop on Future Challenges in Tracking and Trigger

vector flow

NEXT PARTICLE

IN VOLUME

distFromInside
mothervolume

each particles undergoes a
series of basic algorithms (with

* single particle flow ©uter loop over particles)

pick next
daughter volume

v

transform
coordinates to
daughter frame

v

distToOutside
daughtervol

v

update step +
boundary

Sandro Wenzel

2nd step

Each algorithm takes a basket
of particles and spits out
vectors to the next algorithms

IZ:> less function calls!

'::> SIMD (SSE,AVX)) instructions
IZ:> better code locality (icache)

distFromInside
mothervolume

vector flow

pick next
daughter volume

YEm

transform
coordinates to
daughter frame

SIMD

distToOutside
daughtervol

SIMD

update step +
boundary

5th International Workshop on Future Challenges in Tracking and Trigger

SIMD Vectorization Programming model
How to (particle) vectorize existing code (with many branches...) ?

Option A (“free lunch”):

put code into a loop and let the compiler do the work
[J works in very few cases

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

SIMD Vectorization Programming model
How to (particle) vectorize existing code (with many branches...) ?

Option A (“free lunch”):

put code into a loop and let the compiler do the work
[J works in very few cases

Option B (“convince the compiler”):

refactor the code to make it “auto-vectorizer” friendly
[J might work but strongly compiler dependent

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

SIMD Vectorization Programming model

How to (particle) vectorize existing code (with many branches...) ?

Option A (“free lunch”):
put code into a loop and let the compiler do the work

[J works in very few cases

Option B (“convince the compiler”):
refactor the code to make it “auto-vectorizer” friendly
[J might work but strongly compiler dependent

Option C (“‘use SIMD library”):

refactor the code and perform explicit vectorization using

a vectorization library

[J always SIMD vectorizes, compiler independent
[J excellent experience with the Vc library
[other libraries exist:VectorType (Agner Fog), Boost::SIMD, ...

http://code.compeng.uni-frankfurt.de/projects/vc

I/ hello world example withVc-SIMD types
Vc::Vector<double> a, b, c;
c=a+tb;

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

http://code.compeng.uni-frankfurt.de/projects/vc
http://code.compeng.uni-frankfurt.de/projects/vc

“Option A: Free lunch vectorization”

2k starting point: some existing code (here easy example)

bool contains(const double * point){
for(unsigned int dir=0; dir < 3; ++dir){
if(fabs (point[dir]-origin[dir]) > boxsize[dir])
return false;

;

return true;

}

2k provide vector-interface, call basic/elemental function ... and

hope that compiler autovectorizes ...

void contains_v(const double * point, bool * isin, int np) {

for(unsigned int k=0; k < np; ++k) {
isin[k]=contains(&point[3*k]);
I3

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

10

Option B: convince the compiler

* massage/refactor original code to make the compiler autovectorize
copy scalar code to new function ("manual inline")
AOS - SOA conversion of data layout

early - return removal

O O O O

manual loop unrolling

void contains_v_autovec(const P & points, bool * isin, int np){
for (int k=0; k < np; ++k)
{
bool resultx=(fabs (point.coord[0][k]-origin[0]) > boxsize[0]);
bool resulty=(fabs (point.coord[|][k]-origin[|]) > boxsize[|])
bool resultz=(fabs (point.coord[2][k]-origin[2]) > boxsize[2]);
isin[k]=resultx & resulty & resultz;

1}

2k this is only version that autovectorizes uncondionally with all
compilers tested (icc |3, gcc 4.7/4.8)

2% uncondionally: no pragmas or further platform/compiler dependent

hints
Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Option C: Use vector library/classes

void contains_v_Vc(const P & points, bool * isin, int np)

{

for(int k=0; k < np; k+=Vc::double_v::Size)
{
Vc::double m inside;
inside = (abs (Vc::double v(point.coord[0][k])-origin[0]) < boxsize[0]);
inside&= (abs (Vc::double v(point.coord[l][k])-origin[1]) < boxsize[|])
inside&= (abs (Vc::double v(point.coord[2][k])-origin[2]) < boxsize[2]);
// write mask as boolean result
for (int j=0;j<Vc::double_v::Size;++j){
isin[k+j]=inside[j];
}

;

3K almost same code as before using Vc library (see talk yesterday)
always vectorizes; don’t have to convince compiler

excellent performance (automatically uses aligned data)

can mix vector context and scalar context (code)

O O O O

choice

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

given that we have to refactor code anyway, this is our implementation

12

Status of simple shape/algorithm investigations

2 provided optimized code to simple shapes (box, tube, cone) for functions
O ¢ DistTolnside”, “DistToOutside”, “Safety”, “Isinside/Contains”
O here: using the ROOT shapes

O For simple shapes the performance gains match our expectations

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger
13

Status of simple shape/algorithm investigations

2 provided optimized code to simple shapes (box, tube, cone) for functions
O ¢ DistTolnside”, “DistToOutside”, “Safety”, “Isinside/Contains”

O here: using the ROOT shapes

O For simple shapes the performance gains match our expectations

70.0 DistTolnside

525 —— 2.7 —

2.94

%

35.0

I 7.5 _k
0
Box Cone Tube

ROOT/5.3409 [ROOT/5.34.09 (patched) [Vc (SIMD) version

comparison of processing times for 1024 particles (AVX instructions), times in microseconds

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger
13

Status of simple shape/algorithm investigations

2 provided optimized code to simple shapes (box, tube, cone) for functions
O ¢ DistTolnside”, “DistToOutside”, “Safety”, “Isinside/Contains”

O here: using the ROOT shapes

O For simple shapes the performance gains match our expectations

DlstToOutS|de

70.0 LENAELSEE 50.0 2.24

2.94 \ 1.98
Y 375 —— — \
35.0 \ 25.0
7.5 _k 2.5

0 0 s
Cone Tube Box Cone Tube

ROOT/5.3409 [ROOT/5.34.09 (patched) [Vc (SIMD) version

comparison of processing times for 1024 particles (AVX instructions), times in microseconds

525 —— 2.7 —

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger
13

Benchmark higher level navigation algorithm

Implemented a toy detector for a benchmark (“not to easy: not too complex”): 2 tubes, 4
plate detectors, 2 endcaps (cones), 1 tubular mother volume

endcap (cone)

tubular shield \

plate detectors

Logical volume filled with testparticle pool (random
position and random direction) from which we use
a subset N for benchmarks (P repetitions)

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

beampipe (tube)

14

Benchmark Results: Overall Runtime (CHEPI13)

2K time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

tracking time per particle (nanoseconds)

50— 3Kfree lunch gain due to
ROOT seq treatment of baskets
alone
600 | Vec (noSIMD) _
Vec (55E4) 2% excellent speedup for
Vec (AVX) SSE4 version
450 | -
3K some further gain
300 | | with AVX
b < already gain
150 L _ considerably for small
N
1 10 100 1000 10000

number of particles
CHEP13 paper: http:/arxiv.org/pdf/1312.0816.pdf

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

15

http://arxiv.org/pdf/1312.0816.pdf
http://arxiv.org/pdf/1312.0816.pdf

Benchmark Results: Overall Runtime (CHEPI13)

tracking time per particle (nanoseconds)

2K time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

750

600 +

450 +

300 +

150 +

ROOT seq
Vec (noSIMD)
Vec (SSE4)
Vec (AVX)

total speedup of 3.1 _

Sandro Wenzel

10 100 1000 10000
number of particles

3K free lunch gain due to
treatment of baskets
alone

3% excellent speedup for
SSE4 version

3K some further gain
with AVX

b < already gain
considerably for small

N

CHEP13 paper: http:/arxiv.org/pdf/1312.0816.pdf

5th International Workshop on Future Challenges in Tracking and Trigger

15

http://arxiv.org/pdf/1312.0816.pdf
http://arxiv.org/pdf/1312.0816.pdf

Further Metrics: Executed Instructions

2K investigate origin of speedup: study hardware performance counters; here
number of instructions executed

~ 4 —
é ROOT seq
= Vec (noSIMD)
§ 3| Vec (SSE4)
'\;‘/ Vec (AVX)
O
5 2
o,
5
o,
0
=

| 10 100 1000 10000

number of particles

Sandro Wenzel

3K gain mainly due to
less instructions
(for the same work)

5th International Workshop on Future Challenges in Tracking and Trigger

16

Further Metrics: Executed Instructions

2K investigate origin of speedup: study hardware performance counters; here
number of instructions executed

4 3K gain mainly due to

=) ROOT seq less instructions
S
% Vec (n0SIMD) (for the same work)
= 3 Vec (SSE4) :
g Vec (AVX) * detailed analysis (binary
= : instrumentation) can
g 7|] give statistics, e.g.:
Q.
g ROOT | Vec
5 1 ; : MOV | 30% 15%
é CALL 4% 0.4%
g ol

1 10 100 1000 10000 | s> | s% | ss%

number of particles instr)

comparison for N=1024 particles
(AVX versus ROOT seq)

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger
16

Current performance status (April 14)

since CHEPI 3, have improved the algorithms further

distFromInside
mothervolume

vector flow

pick next -
daughter volume |

Vg

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger |7
17

Current performance status (April 14)

since CHEP13, have improved the algorithms further

good overall performance gains for navigation algorithm (in toy
distFrominside detector with 4 boxes, 3 tubes, 2 cones) - compared to ROOT/5.34.17

mothervolume
vector flow \ |6 particles | 1024 particles | SIMD MAX
) chk nexlt . Intel
S vyBridge | ~2.8x | ~4.0x 4x
* SIMD_ (AVX)
transform
coordinates to Intel Haswell
daughter frame (AVXZ) 3 .OX 5 ,OX 4X
SIMD.
doiToous Intel Xeon-
Phi ~4. | x ~4.8x 8x
SIMD. (AVX512)
update step +

boundary

Xeon-Phi and Haswell benchmarks by CERN Openlab (Georgios Bitzes)

gcc 4.8;-O3 -funroll-loops -mavx; no FMA

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger |7
17

Improving vectorization: C++ template techniques

“branches are the enemy of vectorization...”

a lot of branches in geometry code just distinguish between “static” properties of
class instances

O general “tube solid” class distinguishes at runtime between “FullTube”,“Hollow Tube” ...

Full Tube HollowTube Full TubePhi

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

18
18

Improving vectorization: C++ template techniques

“branches are the enemy of vectorization...”

a lot of branches in geometry code just distinguish between “static” properties of
class instances

O general “tube solid” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

we employ template techniques to:
O evaluate and reduce “static” branches at compile time

O to generate binary code specialized to concrete solid instances

= makes vectorization more efficient

= allows better compiler optimizations in scalar code

O AbstractTube

SpecializedTube

L Safety
FullTube ~ HollowTube FullTubePhi %

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger |18
18

Beyond the prototype: Towards a
general high performance library for
detector geometry

‘““vectorization everywhere”
‘“architecture abstraction”

“reusable generic components”

with contributions from

Georgios Bitzes (CERN Openlab)
Johannes De Fine Licht (CERN technical student)
Guilherme Lima (Fermilab)

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

19
19

Where do we go from here?

2 It is now time to put these experiences/results into
practice and provide a complete vectorized geometry
library for simulation packages

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

20

Challenges from the software development
perspective

3 Lessons learned in small prototype

O in prototype, had to refactor or rewrite code completely to achieve
vectorization

O vector code exists in addition to scalar code

3k Should we follow same approach to port large existing code base in
Geant4/ROOT/USolids geometry library?

O maintenance nightmare

O validation nightmare

3k Clearly the answer is no: It would be nice to have code which can be
used in both scalar and vector context (to large extentd)

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger
21

Challenges continued

2K How can we reuse the same code on the CPU + GPU?
O the geometry library should be usable on different architectures

O A vector friendly CPU functions is a good starting point for a kernel on
the GPU; GPU could just reuse vector kernel in a different context

3K How can we benefit from future advances in compiler
technology (autovectorization)?

O expressing algorithms with Vc often makes them suitable for
autovectorization

O we would like to stay flexible and possibly benefit from advances in this
area

3K How can we make code platform independent + vector
implementation independent?

O How can we play with other vector library implementations?

O We'd like to use the best option available on a case by case basis (Vc,
Boost::Simd, VectorClass (Agner Fog) as a function of performance and

platform

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

22

“Generic programming”

Generic programming

2K Generic programming with C++ templates provides the solution
to all those problems

O has been around for a long time and is among the few high-performance
techniques of C++

O not much used in HEP codes (at least not in simulation)

O here,a very good option (inside a library implementation, almost not
much user code) and probably almost without alternative

O same approach asVc (for instance) at a slightly higher level
2K works very well with NVidia CUDA

2% not (really) supported by pure OpenCL ...

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger
23

A simple example for the generic approach

Example code for propagation of particles in a constant magnetic field ...

template<typename BaseDType, typename BaselType>

void ConstBzFieldHelixStepper: :DoStep(
BaseDType const & x0, BaseDType const & y@, BaseDType const & z0,
BaseDType const & dx@, BaseDType const & dy@, BaseDType const & dzo,
BaseIType const & charge, BaseDType const & momentum, BaseDType const & step,
BaseDType & x, BaseDType & y, BaseDType & z,
BaseDType & dx, BaseDType & dy, BaseDType & dz
) const

const double kB2C local = - ;

BaseDType dt = sqrt((dxe*dxe) + (dyo*dye));

BaseDType invnorm=1./dt;

BaseDType R = momentum*dt/((kB2C local*BaseDType(charge))*(fBz));
BaseDType cosa= dx@*invnorm;

BaseDType sina= dy@*invnorm;

BaseDType helixgradient = dz@*invnorm*abs(R);

// some code omitted ...
X = X0 + R¥(-sina + cosphi*sina + sinphi*cosa));

y = y0 + R*¥(cosa + sina*sinphi - cosphi*cosa));
z = z0 + helixgradient*phi;

dx = dx@ * cosphi - sinphi * dye;
dy = dx@ * sinphi + cosphi * dye;
dz = dzo;

}
Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger 24

24

A simple example for the generic approach

Example code for propagation of particles in a constant magnetic field ...

template<typename BaseDType, typename BaselType>

abstract types

void ConstBzFieldHelixStepper: :DoStep(
BaseDType const & x0, BaseDType const & y@, Ba
BaseDType const & dxO@, BaseDType const & dye@,
BaseIType const & charge, BaseDType const & mo

BaseDType & x, BaseDType & y, BaseDType & z, | &
BaseDType & dx, BaseDType & dy, BaseDType & dz actua COde ead

) const (almost) as usual

const double kB2C_local = -

BaseDType
BaseDType
BaseDType
BaseDType
BaseDType
BaseDType

dt = sqrt((dxe*dxe) + (dye*dyo));
invnorm=1./dt;

R = momentum*dt/((kB2C local*BaseDType(cha
cosa= dx@*invnorm;

sina= dy@*invnorm;

helixgradient = dz@*invnorm*abs(R);

// some code omitted ...

X X0 +
y = yo +
y4 Z0 +

dx = dxo
dy = dxo
dz = dzo;

}

R*¥*(-sina + cosphi*sina + sinphi*cosa));
R¥(cosa + sina*sinphi - cosphi*cosa));
helixgradient*phi;

* cosphi - sinphi * dye;
* sinphi + cosphi * dyeo;

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

24
24

template<typename BaseDType, typename BaselType>

A simple example for the generic approach

Example code for propagation of particles in a constant magnetic field ...

abstract types

void ConstBzFieldHelixStepper: :DoStep(

BaseDType
BaseDType
BaselType
BaseDType
BaseDType

const & x0, BaseDType const & y@, Ba
const & dx@, BaseDType const & dy@,
const & charge, BaseDType const & mo
& X, BaseDType & y, BaseDType & z,

& dx, BaseDType & dy, BaseDType & dz actual code read

) const

const double kB2C_local = -

BaseDType
BaseDType
BaseDType
BaseDType
BaseDType
BaseDType

dt = sqrt((dxe*dxe) + (dye*dyo));
invnorm=1./dt;

R = momentum*dt/((kB2C local*BaseDType(cha
cosa= dx@*invnorm;

sina= dy@*invnorm;

helixgradient = dz@*invnorm*abs(R);

// some code omitted ...

}

Sandro Wenzel, CERN-PH-SFT

X0 +
yo +
Z0 +

X
y
z

dx

dy
dz

dxo
dxo
dzo;

R*¥*(-sina + cosphi*sina + sinphi*cosa));
R¥(cosa + sina*sinphi - cosphi*cosa));
helixgradient*phi;

* cosphi - sinphi * dye;
* sinphi + cosphi * dye;

(almost) as usual

Demonstrated use of
this code in:

a) scalar sense

b) vectorization with Vc

C) autovectorization with
Intel compiler

d) as the basis for a CUDA
kernel

excellent for maintenance

5th International Workshop on Future Challenges in Tracking and Trigger

24
24

“VecGeom”

2% A project “VecGeom” was started to put those ideas into practice for

the geometry

2% merged with AIDA Unified Solids effort

2K https://github.com/sawenzel/VecGeom.git

2% current implementation status:

O

O O O O

library abstraction layer to provide some abstractions on concepts that differ
in various backends (masks, masked assignments, math functions, loopers)

generic templated implementations for few shapes (box, para, tube, cone)
geometry hierarchies on CPU and GPU
can be basis for GPU + Geant-V simulation prototypes (already used)

much reduced actual code base compared to previous situation with different
versions for scalar and vector code

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

25

The prototype: summary

Performance

O optimized many
particle treatment

Approach

template techniques

algo + class
review

O template class
specialization / code
generation

Implementation

Ve library.

Sandro Wenzel, CERN-PH-SFT

5th International Workshop on Future Challenges in Tracking and Trigger
26

VecGeom : overview

] optupnzed many 0 SIMD abstraction O reusable components
particle treatment

Performance

0 optimized |- 0 CPU/GPU abstraction O same code base for

particle functions CPU/GPU where

O optimized base appropriate

types / containers

Approach

template techniques

algo + class U teml?laFe c.lass O generic programming
: specialization / code
SENVIE Y generation

Implementation

Ve library Cilk Plus Boost::SIMD

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger
27

summary

Part I:
promising SIMD results in geometry demonstrator

promoted use of vectorization in simulation codes

Part Il

promoted use of generic programming in HEP codes; working
towards general high-performance geometry library that is

flexible,
portable,
performant,

maintainable due to reduced code size

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger 28
28

