Radiation Properties of Ions and Exotic Nuclei at Relativistic Energies

Zhongwen Wu, Andrey Surzhykov, and Stephan Fritzsche

Helmholtz-Institut Jena, Jena, Germany Northwest Normal University, Lanzhou, China

International Conference on Science and Technology for FAIR in Europe 2014
Worms, Germany, 15 October, 2014

Outline

- > Introduction
- > Theoretical method
- > Main results
- > Summary

- \triangleright Introduction \checkmark
- > Theoretical method
- > Main results
- > Summary

Introduction

TABLE	I: Nuclear	effects	ın	atomic	transitions

Nuclear property	Effect on atomic structure		
Charge $+Ze$	Binding energy		
Size – radius r_{RMS}	Field shift		
Mass $M < \infty$, nuclear recoil	Mass shift: NMS, SMS		
Spin and magnetic moment	Magnetic HFS		
Quadrupole moment	Quadrupole HFS		
Weak interaction	Parity mixing of atomic states		

Polarizability - virtual nuclear excitations Nuclear polarization

Nuclear transitions IC/NEEC, BIC/NEET

The angular distributions of x-rays are extensively studied. A very typical measurement has been done at the experimental storage ring in GSI following the REC of HCIs.

The nuclear effects in atomic structures and transitions have been studied for many years.

These effects on atomic structures and transitions are not very large. Compared to total decay rates, the angle-resolved properties are much more sensitive.

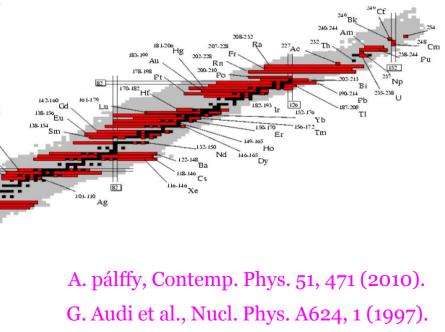
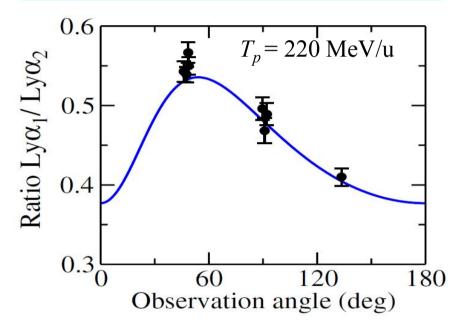


Fig.2.1.1: Chart of nuclei showing the isotopes for which optical spectroscopy has been performed in long isotopic chains or on nuclei far from stability.

Angular distributions of the Ly- α_1 and $K\alpha_1$ emissions

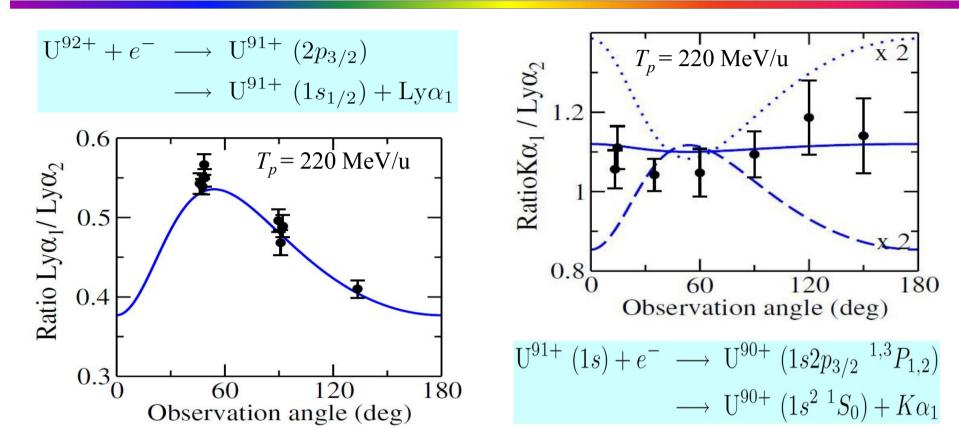
$$U^{92+} + e^{-} \longrightarrow U^{91+} (2p_{3/2})$$

 $\longrightarrow U^{91+} (1s_{1/2}) + Ly\alpha_1$



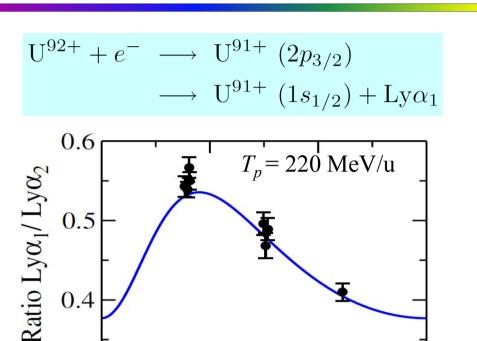
➤ A strong anisotropic angular distribution.

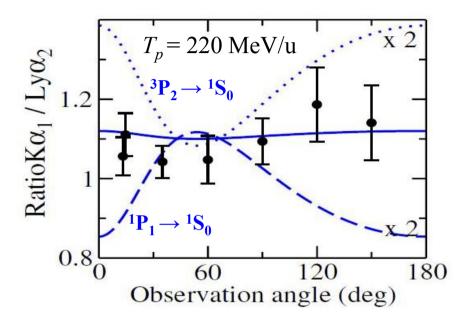
Angular distributions of the Ly- α_1 and $K\alpha_1$ emissions



- ➤ A strong anisotropic angular distribution.
- \triangleright The $K\alpha_1$ emission is almost isotropic.

Angular distributions of the Ly- α_1 and $K\alpha_1$ emissions





$$U^{91+} (1s) + e^{-} \longrightarrow U^{90+} (1s2p_{3/2}^{1,3}P_{1,2})$$

 $\longrightarrow U^{90+} (1s^{2} {}^{1}S_{0}) + K\alpha_{1}$

➤ A strong anisotropic angular distribution.

Observation angle (deg)

ightharpoonup The $K\alpha_1$ emission is almost isotropic.

60

0.3

> Such an isotropy caused by the mutual cancellation.

120

180

Motivation

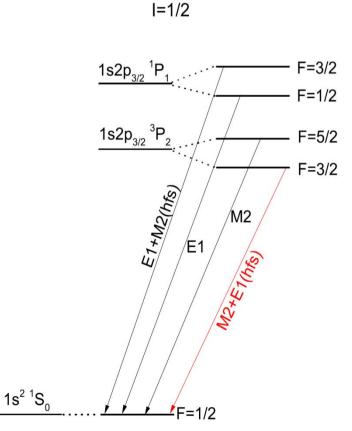
The present angular distribution of the $K\alpha_1$ emission was displayed for uranium ions with *zero nuclear spin*.

However, for *nonzero-spin isotopes*, the fine-structure levels will split into more hyperfine components which all contribute to the $K\alpha_1$ emission.

Motivation

The present angular distribution of the $K\alpha_1$ emission was displayed for uranium ions with *zero nuclear spin*.

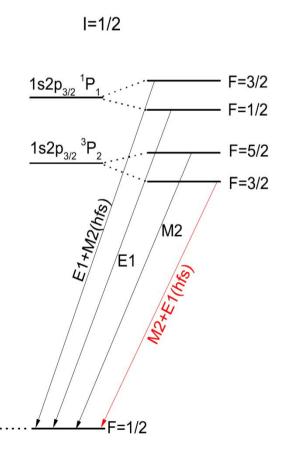
However, for *nonzero-spin isotopes*, the fine-structure levels will split into more hyperfine components which all contribute to the $K\alpha_1$ emission.



Motivation

The present angular distribution of the $K\alpha_1$ emission was displayed for uranium ions with *zero nuclear spin*.

However, for *nonzero-spin isotopes*, the fine-structure levels will split into more hyperfine components which all contribute to the $K\alpha_1$ emission.



1s² 1S,

In this case, how does the hyperfine splitting affect the (hyperfine- and fine-structure-averaged) angular distribution of the $K\alpha_1$ emission?

TABLE I: Nuclear effects in atomic transitions				
Nuclear property	Effect on atomic structure			
Charge $+Ze$	Binding energy			
Size – radius r_{RMS}	Field shift			
Mass $M < \infty$, nuclear recoil	Mass shift: NMS, SMS			
Spin and magnetic moment	Magnetic HFS			
Quadrupole moment	Quadrupole HFS			
Weak interaction	Parity mixing of atomic states			
Polarizability – virtual nuclear excitations	Nuclear polarization			
Nuclear transitions	IC/NEEC, BIC/NEET			

- > Introduction
- \triangleright Theoretical method $\sqrt{}$
- > Main results
- > Summary

Angular distribution of hyperfine-resolved decay photons

Within the density matrix theory, the angular distribution of hyperfineresolved decay photons is given by

$$W_{if}(\theta) = \frac{1}{4\pi} [1 + \mathcal{A}_{20}(\beta_i F_i) f_2(\beta_i F_i, \beta_f F_f) P_2(\cos \theta)]$$

 A_{20} denotes the alignment parameter; f_2 the structure function; $P_2(\cos\theta)$ the second-order Legendre polynomial.

Angular distribution of hyperfine-resolved decay photons

Within the density matrix theory, the angular distribution of hyperfineresolved decay photons is given by

$$W_{if}(\theta) = \frac{1}{4\pi} [1 + \mathcal{A}_{20}(\beta_i F_i) f_2(\beta_i F_i, \beta_f F_f) P_2(\cos \theta)]$$

 A_{20} denotes the alignment parameter; f_2 the structure function; $P_2(\cos\theta)$ the second-order Legendre polynomial.

$$\mathcal{A}_{k0}(\beta_i F_i) = (-1)^{J_i + I + F_i - k} \left[J_i, F_i \right]^{1/2}$$

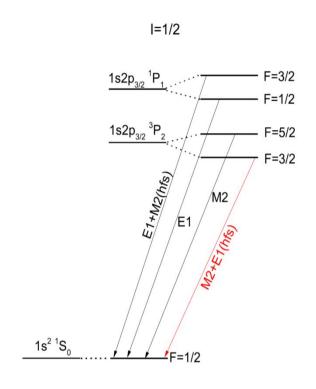
$$\times \left\{ \begin{matrix} F_i & F_i & k \\ J_i & J_i & I \end{matrix} \right\} \mathcal{A}_{k0}(\alpha_i J_i)$$

For the two fine-structure levels $1s2p_{3/2}$ $^{1}P_{1}$ and $^{3}P_{2}$ of our interest following the REC process

$$\mathcal{A}_{20}(^{1}P_{1}) = \sqrt{2} \frac{\sigma_{|1,\pm 1\rangle} - \sigma_{|1,0\rangle}}{2\sigma_{|1,\pm 1\rangle} + \sigma_{|1,0\rangle}},$$

$$\mathcal{A}_{20}(^{3}P_{2}) = -\sqrt{\frac{10}{7}} \frac{\sigma_{|2,0\rangle} + \sigma_{|2,\pm 1\rangle} - 2\sigma_{|2,\pm 2\rangle}}{\sigma_{|2,0\rangle} + 2\sigma_{|2,\pm 1\rangle} + 2\sigma_{|2,\pm 2\rangle}}$$

$$W_{J=1,2}(\theta) = \frac{\sum_{F_i F_f} N_{if} W_{if}(\theta)}{\sum_{F_i F_f} N_{if}}$$



$$W_{J=1,2}(\theta) = \frac{\sum_{F_i F_f} N_{if} W_{if}(\theta)}{\sum_{F_i F_f} N_{if}}$$

$$\frac{1 \text{s2p}_{32} \text{P}_1}{\sum_{F=1/2}} \text{F=3/2}$$

$$W_{K\alpha_1}(\theta) = N_{J=1} W_{J=1}(\theta) + N_{J=2} W_{J=2}(\theta)$$

$$1 \text{s2}^2 \text{S}_0$$

$$1 \text{s2}^2 \text{S}_0$$

$$W_{J=1,2}(\theta) = \frac{\sum_{F_i F_f} N_{if} W_{if}(\theta)}{\sum_{F_i F_f} N_{if}}$$

$$W_{K\alpha_1}(\theta) = N_{J=1} W_{J=1}(\theta) + N_{J=2} W_{J=2}(\theta)$$

$$W_{K\alpha_1}(\theta) = \frac{1}{4\pi} \left[1 + \beta_2^{\text{eff}}(K\alpha_1) P_2(\cos \theta) \right]$$

$$W_{K\alpha_1}(\theta) = \frac{1}{4\pi} \left[1 + \beta_2^{\text{eff}}(K\alpha_1) P_2(\cos \theta) \right]$$

$$W_{J=1,2}(\theta) = \frac{\sum_{F_i F_f} N_{if} W_{if}(\theta)}{\sum_{F_i F_f} N_{if}}$$

$$W_{K\alpha_1}(\theta) = N_{J=1} W_{J=1}(\theta) + N_{J=2} W_{J=2}(\theta)$$

$$W_{K\alpha_1}(\theta) = \frac{1}{4\pi} \left[1 + \beta_2^{\text{eff}}(K\alpha_1) P_2(\cos \theta) \right]$$

$$\frac{1 \cdot 1/2}{\sum_{F=1/2} F=3/2}$$

$$\beta_2^{\text{eff}}(K\alpha_1; I = 1/2)$$

$$= \frac{1}{3\sqrt{2}} N_{J=1} \mathcal{A}_{20}(^{1}P_1) + \frac{2}{5} \sqrt{\frac{7}{5}} N_{J=2} \mathcal{A}_{20}(^{3}P_2)$$

$$\times \left(\frac{\sqrt{6}}{2} \frac{a_{\text{E1}}}{a_{\text{M2}}} - \frac{\sqrt{2}}{4} - \frac{3\sqrt{2}}{7}\right).$$

$$\beta_2^{\text{eff}}(K\alpha_1; I = 0) = \frac{1}{\sqrt{2}} N_{J=1} \mathcal{A}_{20}(^1P_1)$$
$$-\sqrt{\frac{5}{14}} N_{J=2} \mathcal{A}_{20}(^3P_2)$$

The same routes for isotopes with $I > 1/2 \dots$

Z. W. Wu et al., Phys. Rev. A 89, 022513 (2014).

Calculations of alignment and transition amplitudes

In the present calculations, the RATIP and GRASP92 codes based on the multi-configuration Dirac-Fock (MCDF) method were used to produce the required alignment parameters and hyperfine-structure transition amplitudes.

Calculations of alignment and transition amplitudes

In the present calculations, the RATIP and GRASP92 codes based on the multi-configuration Dirac-Fock (MCDF) method were used to produce the required alignment parameters and hyperfine-structure transition amplitudes.

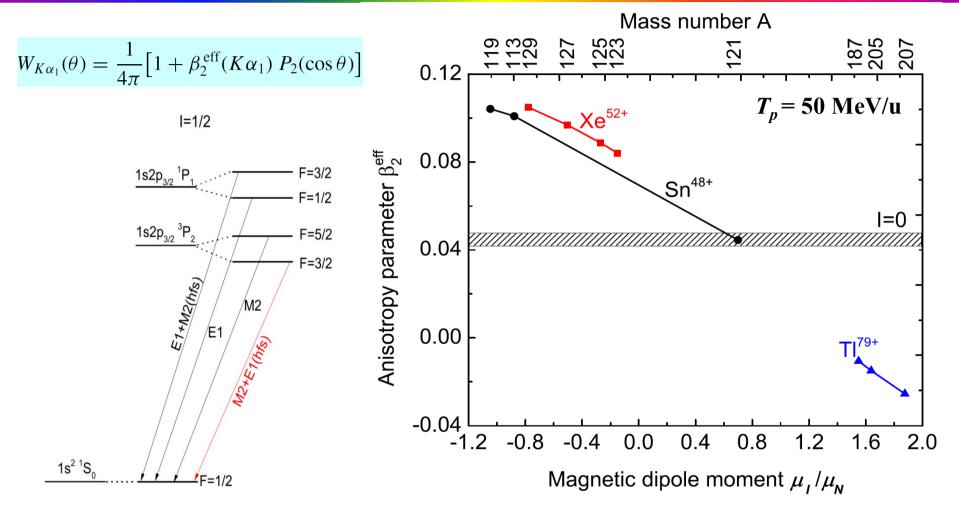
In the MCDF method, an atomic state wavefunction with parity P and total angular momentum J is approximated by linear combination of configuration state functions (CSFs) with the same symmetry

$$|\Psi_{\alpha}(PJM)\rangle = \sum_{r=1}^{n_c} C_r(\alpha) |\Gamma_r(PJM)\rangle,$$

where n_c denotes the number of the CSFs and $c_r(\alpha)$ the configuration mixing coefficients.

- > Introduction
- > Theoretical method
- \triangleright Main results $\sqrt{}$
- > Summary

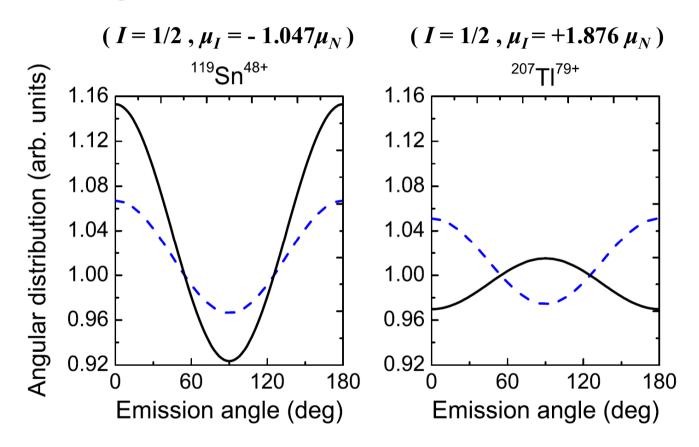
Effective anisotropy parameters of the Ka_1 emission for selected spin-1/2 isotopes



- \triangleright For I = 0, the effective anisotropy parameter is approximately the same.
- For I = 1/2, it depends on the sign and magnitude of the magnetic dipole moment.
- ➤ A new tool for determining nuclear parameters.

Angular distribution of the $K\alpha_1$ emission for spin-1/2 isotopes ¹¹⁹Sn⁴⁸⁺ and ²⁰⁷Tl⁷⁹⁺

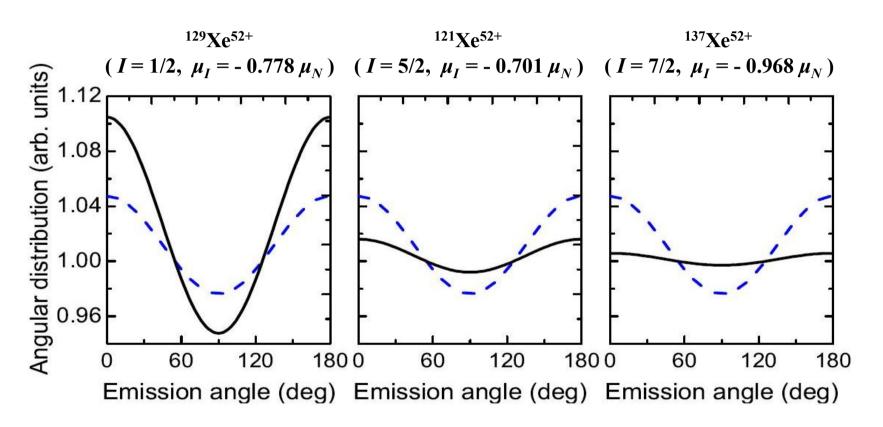
Projectile energy $T_p = 50 \text{ MeV/u } (\text{dashed ---} I = 0, \text{ solid ---} I = 1/2)$



- ➤ For the case of ²⁰⁷Tl⁷⁹⁺ isotope the qualitative change occurs.
- ➤ This is the first physics case that the hyperfine interaction results in a qualitatively different angular behavior of emitted x-ray fluorescence.

Angular distribution of the Ka_1 emission for higher-spin isotopes ¹²⁹Xe⁵²⁺, ¹²¹Xe⁵²⁺ and ¹³⁷Xe⁵²⁺

Projectile energy $T_p = 50 \text{ MeV/u (dashed --- } I = 0, \text{ solid --- } I = 1/2)$



- ➤ The effect of the hyperfine interaction on higher-spin ions is relatively weak.
- ➤ The average over more hyperfine-resolved transitions washes out such effect.

- > Introduction
- > Theoretical method
- Main results
- **>** Summary √

Summary

- \triangleright The angular distribution of the $K\alpha_1$ emission following the REC of initially hydrogenlike ions has been studied within the density matrix theory and the MCDF method.
- \triangleright Special attention has been given to the effect of the hyperfine interaction and how the hyperfine splitting affects the overall $K\alpha_1$ emission for nonzero spin isotopes.
- \gt A quite sizable contribution of the hyperfine interaction was found for spin-1/2 isotopes, while this effect is suppressed for isotopes with I > 1/2.

Summary

- \triangleright The angular distribution of the $K\alpha_1$ emission following the REC of initially hydrogenlike ions has been studied within the density matrix theory and the MCDF method.
- \triangleright Special attention has been given to the effect of the hyperfine interaction and how the hyperfine splitting affects the overall $K\alpha_1$ emission for nonzero spin isotopes.
- \gt A quite sizable contribution of the hyperfine interaction was found for spin-1/2 isotopes, while this effect is suppressed for isotopes with I > 1/2.
- \triangleright We hope accurate measurements on the $K\alpha_1$ angular distribution could be utilized as a tool for determining the nuclear parameters, such as the nuclear spin, and magnetic dipole moment.

