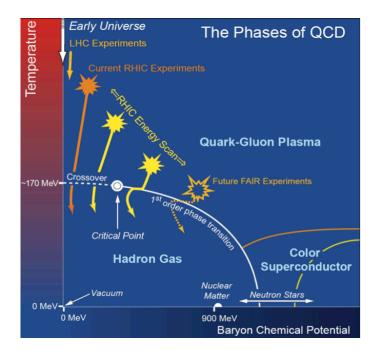


day-one physics and plans

Frank Geurts
Rice University



Exploring the QCD Phase Diagram

Motivation:

- Hadronic gas phase at low T and μ_B
- Lattice QCD calculations → expect a cross-over at high energies
- \triangleright Study onset of QGP at high T and μ_B
 - nuclear modification (R_{CP})
 - NCQ scaling of elliptic flow
- ➤ Do we observe a phase transition as we lower the beam energy? What type of phase transition?
 - directed flow
 - femtoscopy
- ➤ Do we observe a critical point?
 - fluctuation analyses
 - dielectrons?
- ➤ Do we observe chiral symmetry restoration?
 - dielectrons and low-mass vector mesons

- RHIC Beam Energy Scan (Phase I)
 - carried out in 2010-2014
 - covered energies from Vs_{NN}= 7.7 to 64 GeV
- STAR has published 16 papers based on BES-I
 - · four papers submitted
 - five in preparation

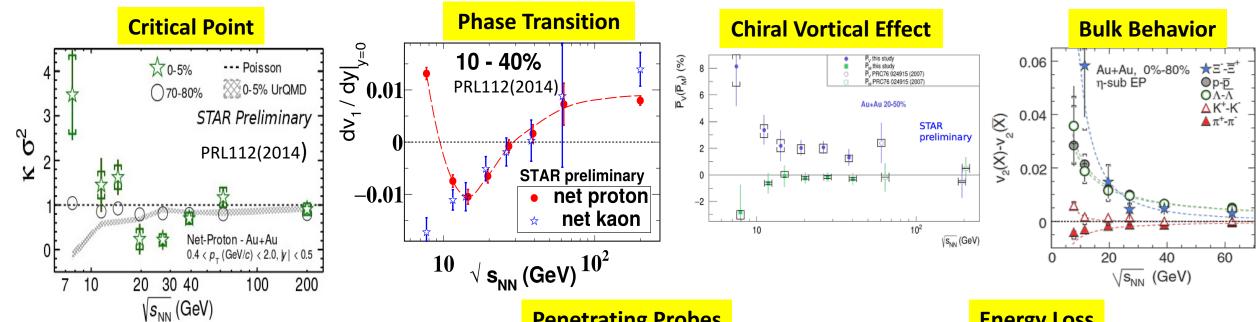
STAR BES-I Papers

Published

- 1. PRC 86 (2012) 054908 v_2 of h[±]
- 2. PRL 110 (2013) 142301 v_2 of particles vs. antiparticles, v_2 of ϕ
- 3. PRC 88 (2013) $014902 PID v_2$
- 4. PRL 112 (2014) 032302 net-p higher moments
- 5. PRL 112 (2014) $162301 v_1$ of p, pbar, π
- 6. PRL 113 (2014) 052302 charge separation along magn. field
- 7. PRL 113 (2014) 092301 net-charge higher moments
- 8. PLB 750 (2015) 64 LMR dielectron at 19.6GeV
- 9. PRC 92 (2015) 014904π HBT
- 10. PRC 92 (2015) 021901 $K\pi$, p- π , Kp fluctuations
- 11. PRL 114 (2015) charge asymmetry dependence of π v_2 and possible CMW
- 12. PRC 93 (2016) 014907 † centrality dependence of PID v_2
- 13. PRC 93 (2016) 021903 Ω and φ spectra
- 14. PRC 94 (2016) 024909 charge balance functions
- 15. PRC 94 (2016) $034908 v_2$ of light nuclei
- 16. PRL 116 (2016) 112302 † v_3 of h^{\pm}

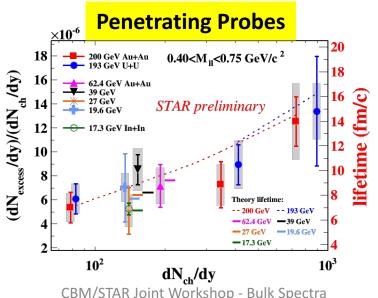
Submitted

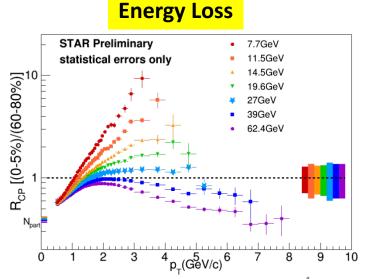
- 1. Energy dependence of J/ ψ production (39 200GeV) arXiv: 1607.07517
- 2. BES global Λ polarization [†]
- BES 3-particle mixed harmonic [†]
 arXiv: 1701.06496 and 1701.06497
- BES bulk properties (π/K/p spectra)
 arXiv: 1701.07065


In Preparation

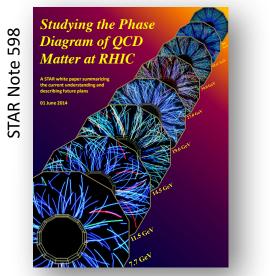
- 1. BES R_{CP} in GPC ^{‡†}
- 2. BES net-kaon in GPC[†]
- 3. BES dielectron in GPC
- 4. BES hypertriton lifetime ready for GPC
- 5. BES strangeness ready for GPC

† includes run-14 Vs_{NN}=14.5 GeV


‡ God-Parent Committee: internal STAR editorial board


Selected Results from BES Phase-I

Most measurements limited by statistics and systematics


Proposal for a BES Phase II with more statistics and new detectors

Beam Energy Scan Phase-II

Dedicated second phase of the BES program, proposed in 2014

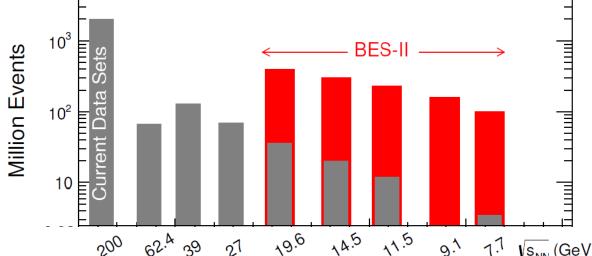
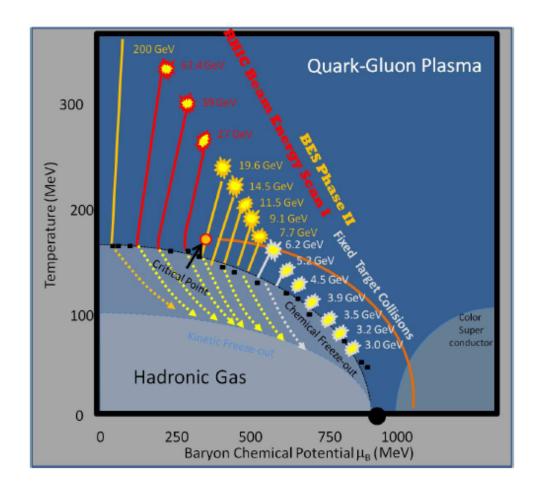


Table 2. Event statistics (in millions) needed for Beam Energy Scan Phase-II for various observables.

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6	
μ_B (MeV) in 0-5% central collisions	420	370	315	260	205	

_		160	125	92	
100	150	200	200	400	
50	50	50	50	50	
50	75	100	100	200	
35	40	50	65	80	
80	100	120	200	400	
100	160	230	300	400	
100	160	230	300	400	
	50 50 35 80 100	50 50 50 75 35 40 80 100 100 160	100 150 200 50 50 50 50 75 100 35 40 50 80 100 120 100 160 230	100 150 200 200 50 50 50 50 50 75 100 100 35 40 50 65 80 100 120 200 100 160 230 300	100 150 200 200 400 50 50 50 50 50 50 75 100 100 200 35 40 50 65 80 80 100 120 200 400 100 160 230 300 400

http://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf

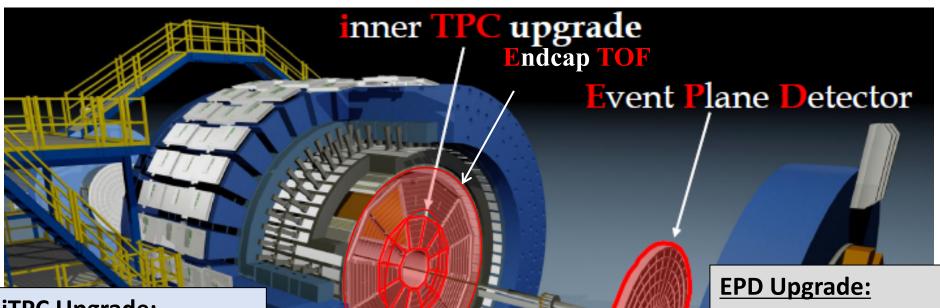


Strong endorsement by NSAC

Long Range Plan 2015:

"Trends and features in BES-I data provide compelling motivation for [...] experimental measurements with higher statistical precision from BES-II"

BES II Fixed Target Mode


Proposal to extend CMS energy range from 7.7 down to 3 GeV

 \triangleright increase μ_B range from 420 MeV to 720MeV

Collider Energy	Fixed- Target Energy	Single- beam AGeV	Center- of-Mass Rapidity	μ _B (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721

Expect 1-2 days dedicated beam time per energy ≈ 50M events/day

The STAR Upgrades and BES Phase II

iTPC Upgrade:

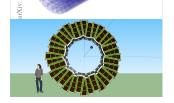
- Rebuilds the inner sectors of the TPC
- Continuous coverage
- Improves dE/dx
- Extends η coverage

from 1.0 to 1.5

• Lowers p_T cut-off from 125 MeV/c to 60 MeV/c

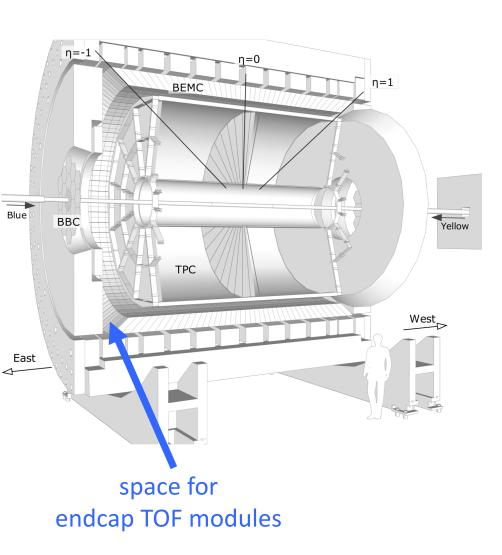
Endcap TOF Upgrade:

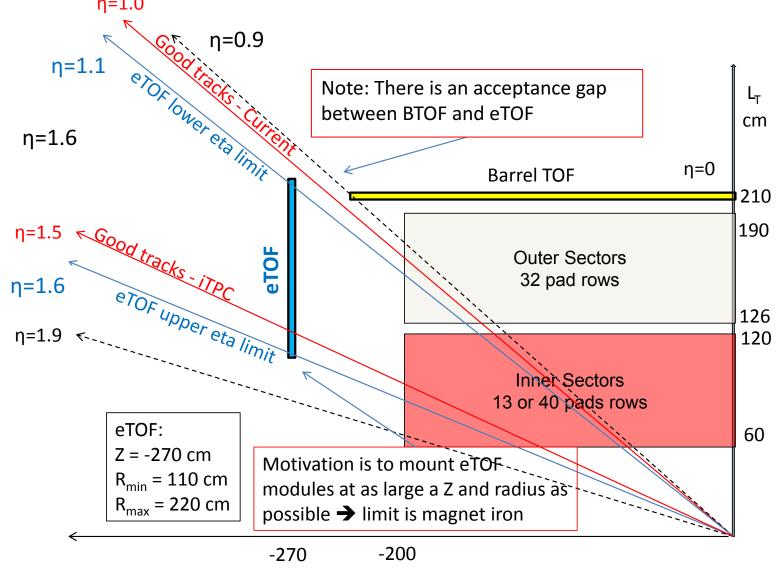
- Rapidity coverage is critical
- PID at $\eta = 1.1$ to 1.5
- Improves the fixed target program
- Provided by CBM at FAIR

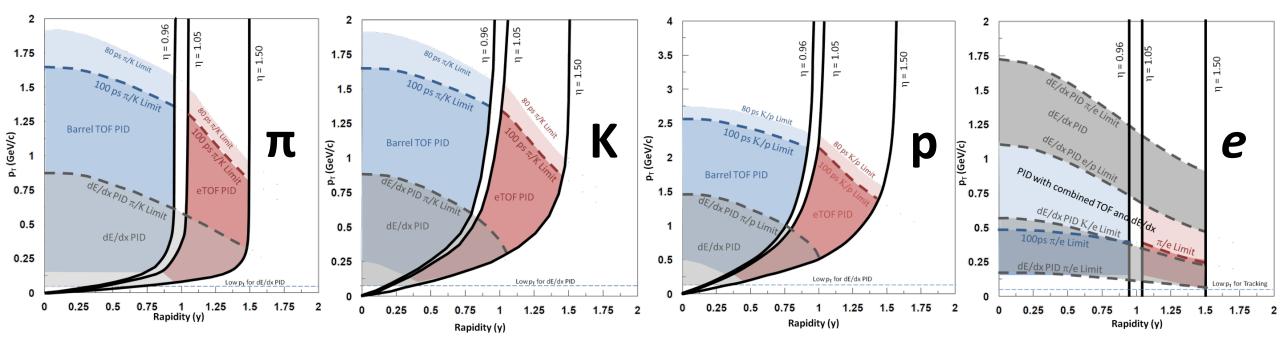

- Improves trigger
- Reduces background
- Allows a better and independent reaction plane measurement critical to BES physics

An Event Plane Detector for STAR https://drupal.star.bnl. gov/STAR/system/files/ **EPD Construction Pro** posal.pdf

> A Proposal for STAR Inner TPC Sector Upgrade (iTPC)

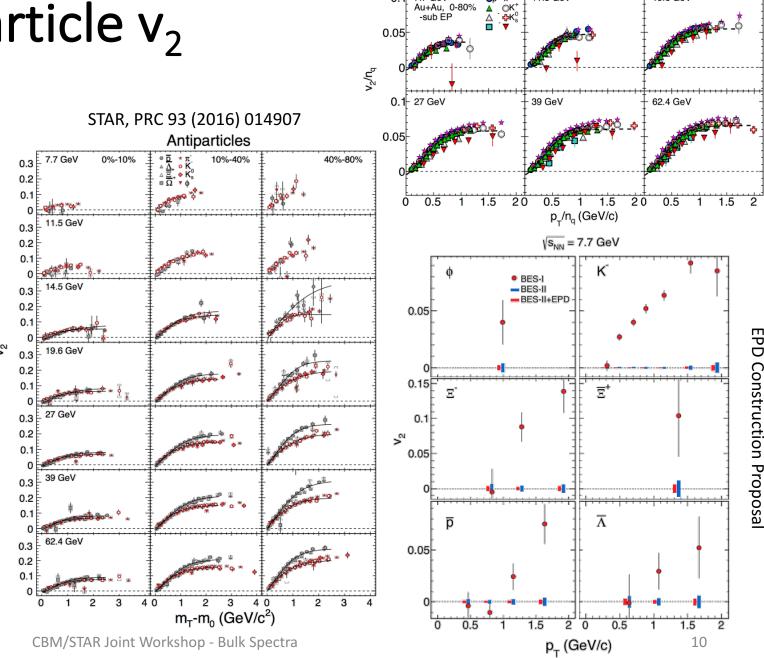

> > The STAR Collaboration




arXiv:1609.05102v1

iTPC + eTOF : Acceptance Considerations

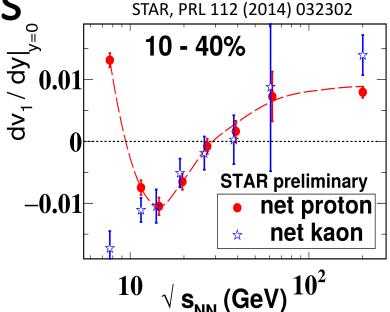
iTPC + eTOF : PID in Collider Mode

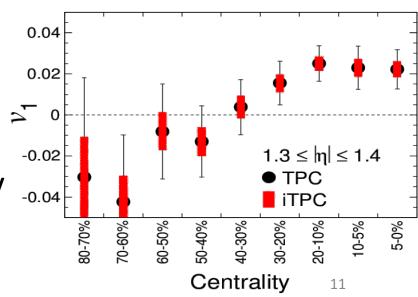

- Lower p_T limit from track length of the TPC (multiple scattering);
 - for BTOF lower p_T limit from minimal track rigidity
- High p_T limit from the TOF time resolution (σ_{TOF} = 100 and 80 ps ranges)

BES-II: Identified Particle v₂

- BES-I: clear indications of baryonmeson splitting at higher energies for Vs_{NN} ≥ 19.6GeV
- NCQ scaling seen for higher energies
 - scaling indication of partonic behavior
 - φ meson may not follow trends below 19.6GeV

➤ Need more statistics:

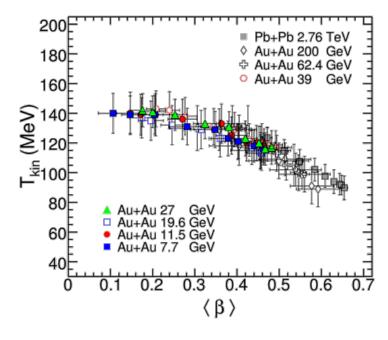

- for energies below √s_{NN} ≤ 11.5GeV limited by statistics
- improve statistics for φ meson at 7.7 and 11.5GeV
- ➤iTPC/EPD: improve EP resolution



STAR, PRC 88 (2013) 014902

BES-II: Directed Flow Measurements

- Directed flow expected to be sensitive to early evolution of collision
 - models with explicit 1st order phase transition predict dip of v₁ slope with double-sign change
 - net-protons proxy for transported protons
- BES-I: Minimum in net-proton v₁ slope
 - interplay between baryon stopping and soft EOS
 - ➤ BES-II: improve statistics
 - ➤ BES-II: improved event-plane resolution from EPD
 - include ∧ baryons
- Forward v₁ measurements as a function of centrality
 - ➤ BES-II: improvements due to extended iTPC coverage



BES-I: Bulk Spectra and Freeze-out Parameters

• Statistical-thermal models in combination with measured particle yields allow the extraction of chemical (T_{chem} , μ_B) and kinetic (T_{kin} , β) freeze-out parameters.

 $ightharpoonup T_{kin}$ and T_{chem} are comparable for $\sqrt{s_{NN}} \le 7$ GeV

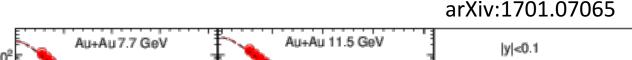
- Stronger collectivity at higher beam energies
- Central collisions show lower T_{kin} and higher β

(MeV) --- Ten Andronic et al. - - Teb Cleymans et al. World data STAR BES 1000

s_{NN} (GeV)

arXiv:1701.07065

BES-II: Bulk Spectra and Freeze-out Parameters

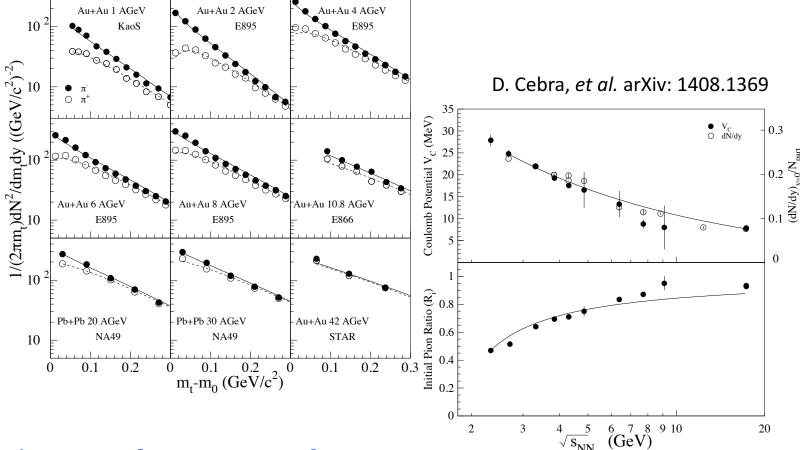

>iTPC : Lowering the lower p_T cut-off from 125 to 60 MeV/c

 Reduce the magnitude of extrapolation by ~2x

	Low pT Yield w/o iTPC	Low pT Yield with iTPC
pion	35%	18%
kaon	17%	8%
proton	13%	5%

Reduce uncertainty on final yields

	Yield Error w/o iTPC	Yield Error with iTPC
pion	9%	5%
kaon	7%	4%
proton	14%	6%

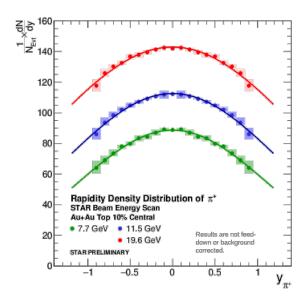


BES-II: π^-/π^+ Ratios

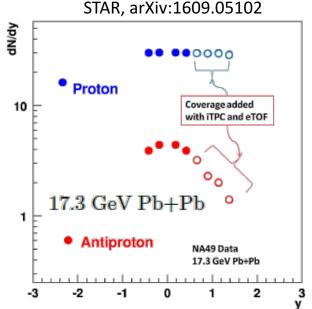
Lowering p_T cut-off to 60 MeV/c:

- Allow for study of Coulomb potential of the source
 - > relates to baryon stopping
 - ... protons bring (net) positive charge to interaction region
- Measure Coulomb enhancement for of π^{-}/π^{+} ratios for $p_{T}<100 MeV/c$

➤ Decrease of V_C indicative of expansion of source or reduction in baryon stopping


BES-II: Bulk Spectra and Rapidity Dependence

iTPC allows measurements that extend to larger rapidities

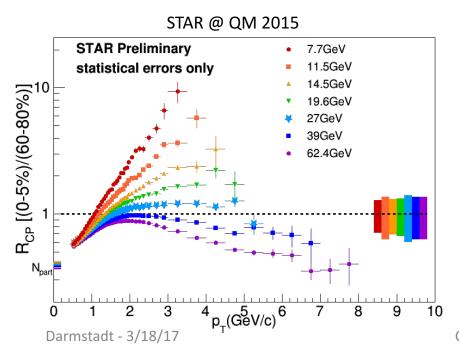

- proton rapidity to y=1.6 (70% of yield at 19.6 GeV)
- RHIC will run longer bunches ⇒
 displaced vertices out to y=2.3 (90% of yield at 19.6 GeV)

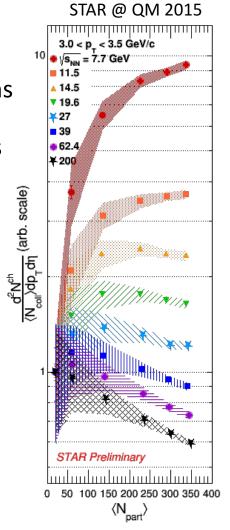
>STAR :: from a mid-rapidity to a 4π detector

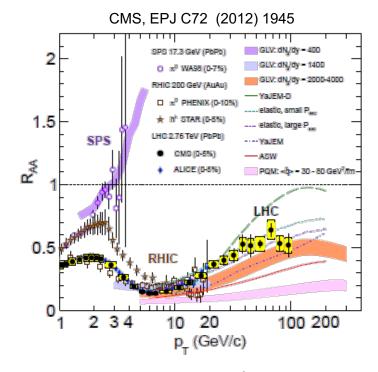
Expect to improve constraints on thermodynamics

- At NA49: from y = 0 to 1.2:
 - no change in proton yields, but ~50% change in antiprotons
 - indicator for changes in μ_{B}
 - factor of 2 in dN/dy $\implies \Delta \mu_B \approx 50 MeV$
- Further include rapidity dependence in the collider physics progra
 - dileptons, directed flow, elliptic flow, fluctuations, ...

BES-I: Nuclear Modification


• LHC/RHIC@200GeV high-p_T suppression


BES-1: disappearance of high-p_T suppression


enhancement and suppression mechanisms compete

evident suppression at high beam energies

no evidence below 14.5GeV

Investigate competing enhancement and suppression as a function of centrality

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_Td\eta}\right)_{high-p_T bin}$$

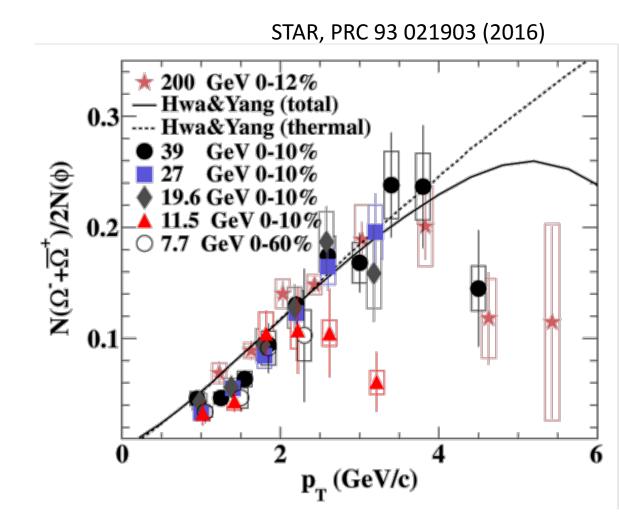
Observe that most central data for $\forall s_{NN} \ge 14.5 \text{GeV turnover} \Rightarrow \text{suppression}$

200 GeV decreases monotonically7.7 and 11.5 GeV increase monotonically

BES-I: Strangeness R_{CP}

- K_s⁰ R_{CP} increases with decreasing beam energies
 - ➤ Effect from partonic energy loss less important at lower $\sqrt{s_{NN}}$
 - CNM effects take over at collisions energies
- R_{CP} differences between particles less pronounced at small collisions energies
 - $Vs_{NN} = 7.7$, 11.5GeV compared to $Vs_{NN} \ge 19.6$ GeV
 - indicative of different properties of system when going to lower energies

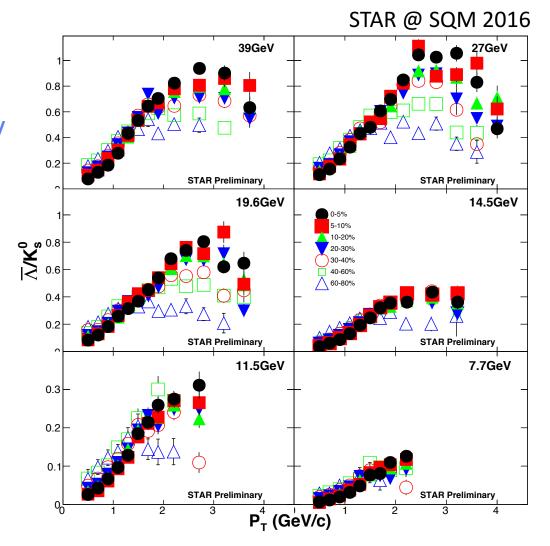
BES Strangeness : Ω and φ Production


Coalescence and recombination models

for 200GeV:

- Ω up to $p_T = 6$ GeV/c dominated by thermal quark recombination
- recombination for φ up to 4GeV/c
- expect straightline of N($\Omega+\overline{\Omega}$)/2N(φ) vs p_T with deviations ~4GeV/c
- BES measurements
 - ratios for 19.6 39 GeV follow 200GeV
 - at $Vs_{NN} = 11.5$ GeV turn down at $p_T = 2$ GeV/c
 - Ω and φ have small hadronic cross sections
 - > early turn-down originates from partonic phase?

➤ Need further study below 19.6GeV


- increase statistics
- improve systematics

Strangeness Baryon-to-Meson Ratio : $\overline{\Lambda}/K_S^0$

- Enhancement of $\overline{\Lambda}/K_S^0$ ratios at intermediate p_T
 - due to parton recombination and collectivity
- Separation of central (0-5% •) and peripheral (40-60% □)
- \triangleright less obvious for \forall s_{NN} ≤ 14.5GeV
 - less baryon enhancement
 - ⇒ possible change of medium properties

➤ Need more statistics at lower collision energies

"... (issues and improvements)"

the second part of the title

Some thoughts on ...

Time to publication

	2012	2013	2014	2015	2016	2017
published	1	2	4	4	5 (1)	-
submitted	1	3	5	5	3	3
GPC	3	7	3	5(1)	6(5)	

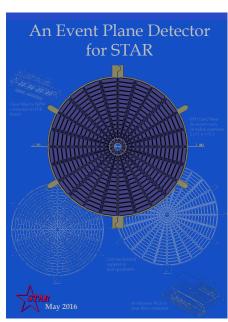
(run-14)

BES-I: 2010/2011 (+2014)

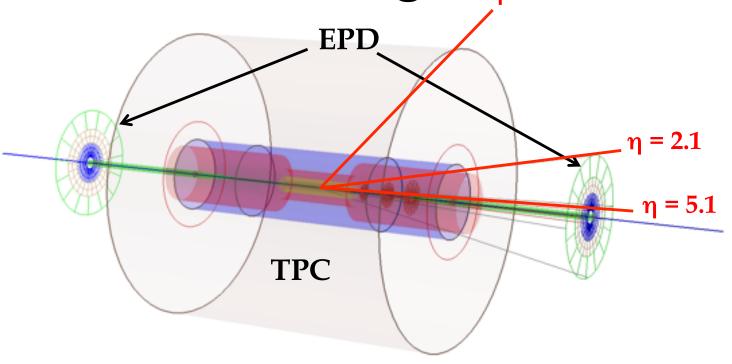
- First GPCs within a year. Great!
 - ✓ Detector calibration and production QA
- Increased complexity ⇒ more time before GPC is formed
 - complex/new algorithms; may need more QA
 - realistic detector simulations for corrections, incl. efficiency calculations (embedding)
 - but, also danger of attrition in analysis team
- Resource competition: BES involves many (small) data sets
 - but, embedding in principle still needed for each running condition

BES-II: 2019/2020

How to speed-up time-to-publication?


- can we improve production turn-around?
 - e.g. calibrations procedures familiar involve HLT?
 - new detectors: iTPC, EPD, and ETOF reconstruction/calibration readiness
- picoDST distribution across institutes?
- > Identify early analysis teams
 - encourage multiple independent teams
 - test-drive reconstruction+analysis chains
 - set up PWG structures for QA cross-check and combination
 - encourage early paper drafts
- ✓ continue active internal tracking of GPCs (from GPC to journal)

Short Summary ...


- BES-II Proposal calls for more statistics and new detectors
 - iTPC, EPD, and ETOF detector upgrades are all well underway
 - several day-one bulk-spectra topics are getting in the starting blocks
 - significant improvements in uncertainties
 - enable new measurements
- Encourage multiple, independent analysis teams
 - important internal QA checks between teams
 - prepare (skeleton) paper drafts early on

Backup

Event Plane Detector: coverage

https://drupal.star.bnl.gov/STAR/ system/files/EPD_Construction_ Proposal.pdf

- Large eta coverage 2.1< $|\eta|$ < 5.1 compared to TPC ($|\eta|$ < 1.0),
- Installed at z position +/- 375 cm
- High η (radial, 16) and azimuthal (24) segmentation
- Good timing resolution (~ 1 ns)
 - → Adds mid-rapidity independent event plane and centrality determination. Also used as trigger detector for BES-II.

Jinlong Zhang Alex Schmah at SQM2016