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Beam parameters: 1.5 GeV/u
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In foco beam diagnhostic:
Energy deposition

A thin wire (@ = 50 um) is locally in an homogeneous ion beam.

Fast ions deposit energy all along
their path:

- material heating

- K-shell holes

|—> K, line emission

Total deposited energy and
K, vield are linked by ions
cross section.

An absolute K, emission measurement is a direct
measurement of the energy deposition.



In foco beam diagnhostic:
Beam profile

A thin foil intersects the ion beam.

Fast ions deposit energy all along their path:
- material heating
- K-shell holes

|—> K, line emission

Total deposited energy and K, yield are
linked by ions cross section.

A spatially resolved K, emission measurement is a
direct measurement of the beam profile.



In foco beam diagnhostic:
Beam profile

A thin foil intersects the ion beam.

o Spherically curved
Bragg crystals

Fast ions deposit energy all along their path:
- material heating

- K-shell holes

|—> K, line emission

Total deposited energy and K, yield are
E/AE ~ 5000 linked by ions cross section.

spatial resolution < 100 um

A spatially resolved K, emission measurement is a
direct measurement of the beam profile.



Probing WDM

Sample is prepared and well diagnosed

Self-emission:  Apay =————— Wien's law

- WDM typically emits from visible to soft X-rays

We need harder radiation:
* for thick, dense, opaque samples
 to overwhelm self-emission



Flat—fi‘e‘-d grating

VUV-broadband sources can be driven by
compact commercial lasers interacting with
high-Z targets (Au, rare earth, ...)
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Flat-*i'eJd grating

The same flat-field grating combined with a spherical
mirror specially coated for VUV high reflectivity acts
as a focusing spectrometer.

* higher fluence on the detector
VUV fast photodiode e spatial resolution

Experimental scheme proposed by WDM
XUV

(laser—driven
backlighter)

ion beam

target foil

fo spectrometer Titanium spectrum

An. Tauschwitz et al.,
Appl. Phys. B 95, 13 (2009)



X-ray backlighting
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an expanding lead cylinder

. X-ray radiography
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Summary

* Energy deposition diagnostics with K-shell spectroscopy

VUV and X-ray backlighters
— driven by moderate energy lasers
— opacity
— temperature

* Hard X-ray sources
— driven by high-power lasers
— radiography
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