





Dimitri Khaghani

International Conference on Science and Technology for FAIR in Europe 2014

Wednesday, October 15<sup>th</sup>, 2014













### Warm Dense Matter







### Warm Dense Matter



$$T \approx 0.1 - 100 \text{ eV}$$
 $T \approx 1000 - 1000000 \text{ K}$ 
 $\rho \approx 0.01 - 100 \text{ g. cm}^{-3}$ 
 $P \approx kbar - Mbar$ 

TOO DENSE to be described by weakly coupled plasma physics yet TOO HOT

to be described by condensed matter physics

## Warm Dense Matter at FAIR



An. Tauschwitz et al., Appl. Phys. B **95**, 13 (2009)

# In foco beam diagnostic: Energy deposition

A thin wire ( $\emptyset \approx 50 \,\mu\text{m}$ ) is locally in an **homogeneous** ion beam.



# In foco beam diagnostic: Energy deposition

A thin wire ( $\emptyset \approx 50 \,\mu\text{m}$ ) is locally in an **homogeneous** ion beam.

Bragg crystals





Fast ions **deposit energy** all along their path:

- material heating
- K-shell holes

 $K_{\alpha}$  line emission

Total deposited energy and  $K_{\alpha}$  yield are linked by ions cross section.

Single hit cameras



An absolute  $K_{\alpha}$  emission measurement is a direct measurement of the energy deposition.

# In foco beam diagnostic: Beam profile

A thin foil intersects the ion beam.



Fast ions **deposit energy** all along their path:

- material heating

- K-shell holes

 $K_{\alpha}$  line emission

Total deposited energy and  $K_{\alpha}$  yield are linked by ions cross section.

A spatially resolved  $K_{\alpha}$  emission measurement is a direct measurement of the beam profile.

# In foco beam diagnostic: Beam profile

A thin foil intersects the ion beam.

# Spherically curved Bragg crystals



Fast ions **deposit energy** all along their path:

- material heating

- K-shell holes



Total deposited energy and  $K_{\alpha}$  yield are linked by ions cross section.

A spatially resolved  $K_{\alpha}$  emission measurement is a direct measurement of the beam profile.

## **Probing WDM**

### Sample is prepared and well diagnosed

**Self-emission:** 
$$\lambda_{max} = \frac{hc}{4.9651 \times k.T}$$
 Wien's law

→ WDM typically emits from visible to soft X-rays

### We need harder radiation:

- for thick, dense, opaque samples
- to overwhelm self-emission

## VUV – XUV opacity





VUV-broadband sources can be driven by compact commercial lasers interacting with high-Z targets (Au, rare earth, ...)



#### **Experimental scheme proposed by WDM**



An. Tauschwitz et al., Appl. Phys. B **95**, 13 (2009)

#### **Opacity modeling in warm dense matter**



courtesy of V.G. Novikov, KIAM, Moscow, Russia

## VUV – XUV opacity





The same flat-field grating combined with a spherical mirror specially coated for VUV high reflectivity acts as a **focusing spectrometer**.

- higher fluence on the detector
- spatial resolution

#### **Experimental scheme proposed by WDM**



An. Tauschwitz et al., Appl. Phys. B **95**, 13 (2009)



# X-ray backlighting



X-ray broadband sources can be driven by moderate high-power lasers (10 J/ns) interacting with high-Z targets (Au, rare earth, ...)

- XANES
  - → mean ionization state

- X-ray opacity
  - → temperature diagnostic



## Simulated radiographs of an expanding lead cylinder





# Laser driven X-ray radiography





### Laser parameters: $E_1$ =120 J

 $\tau_{p}^{-} = 0.6 \text{ ps}$ 



## Summary

- Energy deposition diagnostics with K-shell spectroscopy
- VUV and X-ray backlighters
  - driven by moderate energy lasers
  - opacity
  - temperature
- Hard X-ray sources
  - driven by high-power lasers
  - radiography

## Thank you for your attention

I would like to acknowledge the following individuals for their contribution to this work.

- B. Borm (U. Frankfurt)
- F. Gärtner (GSI/U. Frankfurt)
- K. Li (SIOM, China)
- S. Wolski (U. Frankfurt)
- P. Neumayer (GSI)