Ab initio nuclear structure calculations

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

Coworkers: G. Hagen, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan

Happy Birthday, Jochen!

Overview

- 1. Introduction
- 2. Medium-mass nuclei saturation properties of NN interactions [Hagen, TP, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008)]
- 3. Proton-halo state in ¹⁷F
 [G. Hagen, TP, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010]
- 4. Does ²⁸O exist?

 [Hagen, TP, Dean, Horth-Jensen, Velamur Asokan, Phys. Rev. C 80, 021306(R) (2009)]
- 5. Practical solution to the center-of-mass problem [Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)]

Model-independent description of atomic nuclei

Aim: Reliable predictions with error estimates.

Coupled-cluster method (in CCSD approximation)

Ansatz:
$$|\Psi\rangle = e^T |\Phi\rangle$$

$$T = T_1 + T_2 + \dots$$

$$T_1 = \sum_{ia} t_i^a a_a^\dagger a_i$$

$$T_2 = \sum_{ijab} t_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i$$

- © Scales gently (polynomial) with increasing problem size o²u⁴.
- © Truncation is the only approximation.
- © Size extensive (error scales with A)
- Limited to certain nuclei

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Coupled cluster equations
$$E = \langle \Phi | \overline{H} | \Phi \rangle$$

$$0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$$

$$0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$$

Alternative view: CCSD generates similarity transformed Hamiltonian with no 1p-1h and no 2p-2h excitations.

$$\overline{H} \equiv e^{-T}He^{T} = (He^{T})_{c} = (H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots)_{c}$$

Nuclear potential from chiral effective field theory

van Kolck (1994); Epelbaum et al (2002); Machleidt & Entem (2005);

Ab-initio structure calculations with potentials from chiral EFT

- A=3, 4: Faddeev-Yakubowski method
- A≤10: Hyperspherical Harmonics
- *p*-shell nuclei: NCSM, GFMC(AV18)
- 16,22,24,28O, 40,48Ca, 48Ni: Coupled cluster, UMOA, Green's functions (NN so far)
- Lattice simulations
- Nuclear matter

Questions:

- 1. Can we compute nuclei from scratch?
- 2. Role/form of three-nucleon interaction
- 3. Saturation properties

Precision and accuracy: ⁴He, chiral N³LO [Entem & Machleidt]

- 1. Results exhibit very weak dependence on the employed model space.
- The coupled-cluster method, in its Λ-CCSD(T) approximation, overbinds by 150keV; radius too small by about 0.01fm.
- 3. Independence of model space of N major oscillator shells with frequency ω : Nħ ω > $\hbar^2\Lambda_\chi^2/m$ to resolve momentum cutoff Λ_χ $\hbar\omega$ < N $\hbar^2/(mR^2)$ to resolve nucleus of radius R
- 4. Number of single-particle states $\sim (R\Lambda_x)^3$

Ground-state energies of medium-mass nuclei

CCSD results for chiral N³LO (NN only)

Binding energy per nucleon

Nucleus	CCSD	Λ-CCSD(T)	Experiment	
⁴ He	5.99	6.39	7.07	
¹⁶ O	6.72	7.56	7.97	
⁴⁰ Ca	7.72	8.63	8.56	
⁴⁸ Ca	7.40	8.28	8.67	

Compare ¹⁶O to different approach Fujii et al., Phys. Rev. Lett. 103, 182501 (2009)

B/A=6.62 MeV (2 body clusters)
B/A=7.47 MeV (3 body clusters)

[Hagen, TP, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008)]

Ab initio description of proton halo state in ¹⁷F

• Previous study: shell model in the continuum with 16O core

[K. Bennaceur, N. Michel, F. Nowacki, J. Okolowicz, M. Ploszajczak,

Phys. Lett. B 488, 75 (2000)]

Bound states and resonances in ¹⁷F and ¹⁷O

Single-particle basis consists of bound, resonance and scattering states

- Gamow basis for $s_{1/2} d_{5/2}$ and $d_{3/2}$ single-particle states
- Harmonic oscillator states for other partial waves

Computation of single-particle states via "Equation-of-motion CCSD"

- Excitation operator acting on closed-shell reference
- Here: superposition of one-particle and 2p-1h excitations

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{a}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j}$$

$$R_{\mu} = r^{a} a_{j}^{\dagger} + \frac{1}{2} r_{j}^{ab} a_{j}^{\dagger} a_{j}$$

$$\left[\overline{H}, R_{\mu}\right] |\phi_0\rangle = \omega_{\mu} R_{\mu} |\phi_0\rangle$$

- Gamow basis weakly dependent on oscillator frequency
- d_{5/2} not bound; spin-orbit splitting too small
- s_{1/2} proton halo state close to experiment

[G. Hagen, TP, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010)]

Insights from cutoff variation ³H and ⁴He with induced and initial 3NF

[Jurgenson, Navratil & Furnstahl, Phys. Rev. Lett. 103, 082501 (2009)]

Cutoff-dependence implies missing physics from short-ranged many-body forces.

11

Variation of cutoff probes omitted short-range forces

- Proton-halo state (s_{1/2}) very weakly sensitive to variation of cutoff
- Spin-orbit splitting increases with decreasing cutoff

Results for single-particle energies and decay widths

	¹⁷ O			$^{17}\mathrm{F}$		
	$1/2^{+}$	5/2+	$E_{\rm so}$	$1/2^{+}$	5/2 ⁺	$E_{\rm so}$
GHF	-2.8	-3.2	4.3	-0.082	0.11	3.7
Exp.	-3.272	-4.143	5.084	-0.105	-0.600	5.000

- Level ordering correctly reproduced in ¹⁷O
- Spin-orbit splitting too small

Life times of resonant states

	¹⁷ O	$3/2^{+}$	17 F $3/2^{+}$		
	$E_{\rm sp}$	Γ	$E_{\rm sp}$	Γ	
This work	1.1	0.014	3.9	1.0	
Experiment	0.942	0.096	4.399	1.530	

Is ²⁸O a bound nucleus?

Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ²⁵O unstable (Hoffman et al 2008)
- ^{26,28}O not seen in experiments
- O not seen in experiments

²⁶Ne ²⁷Ne ²⁸Ne ²⁴Ne ²⁵Ne ²⁹Ne ³⁰Ne ³¹Ne ²³Ne 27F 22F 23F 24F 25**F** 26**F** ²⁹F 21F ²²O ²³O ²⁴O 210 ²⁰O ^{21}N ²²N ^{23}N 19N ^{20}N 18C 19C ²⁰C ²²C

³¹F exists (adding on proton shifts drip line by 6 neutrons!?)

Shell model (sd shell) with monopole corrections from three-nucleon force predicts ²⁴O as last stable isotope of oxygen.[Otsuka, Suzuki, Holt, Schwenk, Akaishi, Phys. Rev. Lett. 105, 032501 (2010)]

Neutron-rich oxygen isotopes from chiral NN forces

- Chiral NN forces only: Too close to call. Theoretical uncertainties >> differences in binding energies.
- Chiral potentials by Entem & Machleidt's different from G-matrix-based interactions.
- Ab-initio theory cannot rule out a stable ²⁸O.
- Three-body forces largest potential contribution that decides this question.
- [G. Hagen, TP, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan, Phys. Rev. C 80, 021306(R) (2009)]

No theoretical approach flawless yet. (No approach includes everything (continuum effects, 3NFs, no adjustments of interaction). Stay tuned ...

Practical solution of the center-of-mass problem

Intrinsic nuclear Hamiltonian

Obviously, H_{in} commutes with any Hamiltonian H_{cm} of the center-of-mass coordinate

Situation: The Hamiltonian depends on 3(A-1) coordinates, and is solved in a model space of 3A coordinates. What is the wave function in the center-of-mass coordinate?

Demonstration that ground-state wave function factorizes: $\psi = \psi_{\rm cm} \psi_{\rm in}$

Demonstrate that $\langle H_{cm} \rangle \approx 0$ for a suitable center-of-mass Hamiltonian with zero-energy ground state.

 $H_{\rm cm}(\tilde{\omega}) = T_{\rm cm} + \frac{1}{2} m A \tilde{\omega}^2 R_{\rm cm}^2 - \frac{3}{2} \hbar \tilde{\omega}$

Frequency $\widetilde{\omega}$ to be determined.

Toy problem

Two particles in one dimension with intrinsic Hamiltonian

$$H = \frac{p^2}{2m} + V(x)$$

$$V(x) = -V_0 \exp(-(x/l)^2)$$

$$x = (x_1 - x_2) / \sqrt{2}$$
$$p = (p_1 - p_2) / \sqrt{2}$$

Single-particle basis of oscillator wave functions with m,n=0,...,N

$$\Phi_m(x_1/l)\Phi_n(x_2/l)$$

Results:

1. Ground-state is factored with $s_1 \approx 1$

$$\psi_A = \sum_j s_j \psi_{\rm cm}^{(j)} \psi_{\rm in}^{(j)}$$

2. CoM wave function is approximately a Gaussian

Coupled-cluster wave function factorizes to a very good approximation

Coupled-cluster state is ground state of suitably chosen center-of-mass Hamiltonian.

Factorization between intrinsic and center-of-mass coordinate realized within high accuracy.

Note: Both graphs become flatter as the size of the model space is increased.

[Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)]

Summary

Saturation properties of medium-mass nuclei:

- "Bare" interactions from chiral effective field theory can be converged in large model spaces
- Chiral NN potentials miss ~0.4 MeV per nucleon in binding energy in medium-mass nuclei

A=17 nuclei:

- Equation-of-motion CCSD combined with a Gamow basis
- Accurate computation of proton-halo state in ¹⁷F; halo weakly dependent on cutoff

Neutron-rich oxygen isotopes:

- Ab-initio theory with nucleon-nucleon forces only cannot rule out a stable ²⁸O
- Greatest uncertainty from omitted three-nucleon forces

Practical solution to the center-of-mass problem:

- Demonstration that coupled-cluster wave function factorizes into product of intrinsic and center-of-mass state
- Center-of-mass wave function is Gaussian
- Factorization very pure for "soft" interactions and approximate for "hard" interaction

Outlook

Inclusion of three-nucleon forces

Towards heavier masses (Ca, Ni, Sn, Pb isotopes)
α-particle excitations (low-lying 0+ states in doubly magic nuclei)