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e “historic” 3D detectors
» limited in speed, mostly visual

* modern 3D detectors
o two examples:
o ALICE Time Projection Chamber after GEM upgrade
o CBM Silicon Tracking System
» modern detectors require fast, sophisticated online reconstruction software,
» detection system = detector + high performance computing
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tracks of an a—source in a cloud chamber

spatial resolution:
<1lmm

sensitive time (by adiabatic expansion) : 0.01 sec integration time: > 1042HS
recovery time: 1-2 min (or longer) rate: <10* Hz
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Emulsion Chambers Ry S s T

spatial resolution given by grain size — 0.2 pm =< oREEEE-. TP vy s
ol ) R ' : {

&f XA

used from 1940 until today (e.g. Oscillation
Project with Emulsion-tRacking Apparatus
- OPERA)

8 daughter
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spatial resolution: < 100 um

BEBC - Big European Bubble chamber, in operation 1977 — 1984 at CERN
during this time 6.3 M photos were taken (data taking rate ~102 Hz)
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4 ,
oaanang ™

Nas

streamer chamber

spark chamber
dead time ~ up to ms (clearing field for ions)
\ J

|
rate limited by optical readout

breakthrough: invention of wire chambers/drift chambers
— electronic recording of 3d space points in kHz range...
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requirements for the exploration of the terra incognita:
* high multiplicity
* rate capability & radiation hardness
* low mass budget

in addition to:
e very good momentum resolution

* very good position/impact parameter resolution
e two-track resolution
* particleid

* no detector can fulfill all requirements simultaneously,

* in this talk the state-of-the-art will be discussed on the
basis of the

* ALICE TPC-upgrade plans modern 3D detector require

e future CBM silicon tracking system (STS) :|- very careful optimization of its

operation conditions
Hans Rudolf Schmidt 9



EBERHARD KARLS

TPC - Principle UNIVERSITAT
TUBINGEN
incident
\,\ particle field cage
cathode \ segmented
\\ . J " anode (pads)
\
\
v\ (& (%
1. ionisation 2. drift 3. registration
wvi\s v
L o
¢\@ ©
o\e ¢
W ] | ]
\ I I
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2D x-y-readout
plane

allows continuous 3D-tracking of high
multiplicity events and PID

ALICE PbPb event
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CE
-100kV

* due to their slower drift velocity positve ions accumulate in the drift space end
eventually distort the drift field
e at 50 kHz interaction rate ions from 8000 events fill the drift space!
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“conventional” MWPC readout
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Gas Electron Multiplier

promising candidates for amplification
stages with reduced IBF are MPGC
(Micro Pattern Gas Chambers) like
 GEM (Gas Electron Multiplier)

* MicroMegas

goal for IBF: <1 % (<20 ions flow back
into drift space at a gain of 2000)

reduction of IBF is achieved by a stack
of 4 GEM planes and optimized transfer
fields between GEMS
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MWPC GEM
12mm 1.25mm
- - I o . . . caingcrid Cover electrode
I . smm - = Earn [
3_:[ — . Cathode Wire Grid GEM 1 =l =
2.5mm 3(2)mm — Er \_l:l_‘ 2 mm
S . - Anode Wire Grid GEM 2 il -
32)mm E — (= L | 2mm
GEM 3 b S
Pad Plane omm ) — ETS \_:_‘ 2mm
GEM 4 -
20mm Strong Back 3(5)mm < — Eing readout anode ~._ \_l:l_‘ 2mm

Al Frame

3mm 2mm

/\

conventional MWPC replaced by stack 4 GEM foils
overall IBF depends on many factors (large parameter space):
E;1 , 3 (transfer fields), E;,4 (induction fields)

Ecemi,2,3,4 requires significant R&D
* hole geometry & alignment, ...

goal for IBF: <1 % (<20 ions flow back into drift space at a gain of 2000, £ < 20)
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Basic caveat:
minimization of IBF reduces at the same time the transparency for electrons, i.e, the
energy resolution....

20
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- SSLP-S
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Technical Design Report: base line solution with 4 GEM-system with IBF <1% and o(>°Fe)<12%
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Space Charge Distortions with IBF=1%  UNIVERSITAT

space charge distortion based on average space charge density at 50 kHz interaction rate,
corresponding to a pile-up of positive ions from 8000 events

distortions in radial direction:
dr<19cm

distortions in azimuthal direction:
rdp <4 cm

required precision: ~ few 100 um

can this be corrected? - yes, but....
e correction must be done on the fly
* space charge distribution fluctuates (multiplicity, event rate, ionization) ~ 5%
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typical TPC raw events size: 20 Mbyte exceeds storage band width by far
data rate @ 50 kHz: 1 TByte/s = online data correction & compression

* therequired compression (> factor 20) can only be achieved if tracks are online
reconstructed based on an average distortion map, which must be updated every 15
min

- permanent storage

* the final correction is based on a high resolution distortion map, which must be

updated every 5 ms
- requires external track reference from other detectors (ITS, TRD)

Reconstruction Stage 1
-
«  'mmmm - Cluster — e

electronics ?‘" - Sﬂh!lThd-s - una...l._..
- Chambes-by-chamber - Pad-by-pad gain equalization H
gain equalization (HV) Update Interval Q(15min) i
o i e

Data taking Online Systems Data analysis
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TPC momentum resolution for tracks matched with
the ITS/TRD practically restored after 2"
reconstruction stage!
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silicon sensors (pixel or strip) are inherently 2D-devices, they become 3D by stacking
several sensors:

can a 3D-Silicon Tracking System meet the ambitious CBM requirements?

excellent momentum resolution (Ap/p=1%) at low momenta (<10 GeV/c) & material
budget

simultaneous tracking of several hundred particles < granularity

high collisions rate of up to 10 MHz (TPC 50 kHz) < readout and rad. hardness
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At SIS-energies (and design spatial resolution < 25 pm) the momentum resolution is
dominated by multiple scattering, i.e., for good momentum resolution the active area
has to be practically massless....

* readout electronics outside of active area
— ultra-thin readout cables

e ultra light support structure
— carbon fiber

e 300 um sensor with double sided readout

B

FEE

cables

Sensors

target
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caveat 1: long readout cables to periphery has large capacity (noise)
caveat 2: spacer to decrease capacity of signal lines increases material budget

cable stack: thickness 0.11% X, meshed spacer layer

spacer Kapton, h=100 um, meshed, s=2.25

signal 1 { Al, h=14 um, w=46 im, p=100 um

Polyimide, h=10 um, ==3.5
spacer Kapton, h=50 um, meshed, =2.25
signal 2 Al, h=14 um, w=46 pm, p=100um

——

Polyimide, h=10 um, s=3.5

Kapton, h=100 um, meshed, :=2.25

|
spacer ’
__lr Al, h=30 um

shielding Polyimide, h=20 um, £=3.5

signal lines: h=14 pum Al, w=46 um

cable design is a optimization between capacity (noise) and material budget (multiple scatt.)
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NI X

vs —— '.“

— CF ladder

sensors
CF fixations

LSS

ALICE type support/ladders

alignement structure

caveat: light-weight support structure has to maintain mechanical precision < 100 pm
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1.4: Simulation Results
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materal budget/station momentum resolution reconstruction efficiency
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material budget ranges from 0.3% X/X, (only sensor) to 1% X/X, (sensors + cables)
resulting in:
* reconstruction efficiency up to €x98%
* momentum resolution Ap/p=1%
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sensor:
* n-type silicon

e 300 um thickness ]_
X/X, !
« double sided readout /X,

large number of masks, complicated
* metal interconnect between strips production, yield?

granularity and space point resolution:

e strip pitch: 58 um

* stereo angle between font and back strips: 7.5 °

e striplength: 2.2,4.2,6.2 cm Hans Rudolf Schmidt 24
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hit density [cm™]

—all

— protons
1= pions

[ |— electrons
[ |—other

107
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fixed target experiments have steeply falling hit
densities =sensor geometry has to adapted accordingly

A e s e s e s chained combinations = many different basic “modules’

y [em]
station 1

Station 1 sensor 2

Entries

80—
60—
40—

20—

Mean 1.068

the CBM STS features 3 different sensor sizes and daisy

)

= enormous complication for simulation and production

3 4 5
Muiltiplicity of hits per strip

double hit probability for inner
sensors below 3.6 % (7% at SIS 300)

for Au+Au collisions

—
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effects in high radiation environment:
a. typeinversion = end-of-lifetime criterion
b. thermal runaway = keep sensors at -5°C all the time

full depletion voltage b.
= Lieak = aV®
B T \2 Epp(T) (1 1
_ lieak (T') = Tieak,203 (293K> exp <—W (T ~ 503K
e
':*’ IllI llll] 1 1 1 IllIII 1 1 1 llIllI
10" 10" 10" 10" o cmf;”]
fluence T -

end-of-lifetime of sensor reached leakage current increase with fluence f

at 10* n,,/cm? and temperature T = sensor cooling

5-10 month of running at 10 MHz mandatory to avoid thermal runaway

)

Hans Rudolf Schmidt 26




EBERHARD KARLS

111.2: Cooling UNIVERSITAT

caveat: fast readout electronics produces 50 kW thermal power within insulation volume

thermal insulation box

sensors: -5 °C

r/o electronics: 50 kW

Very efficient high power CO, cooling system under development to neutralize 50 kW
thermal power from r/o electronics!
for comparison: CMS develops a 15 kW CO, cooling system for sLHC
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CBM will have a (quasi-) continuous beam and event rates (up to 107 Hz):
* trigger: no trigger
* complex signatures for rare events (e.g. 2—charged hadrons) difficult to
implement in hardware
* extreme event rates set strong limits to trigger latency
* therefore: purely data driven readout with time-stamped data
* raw data rate: 1 TB/s exceeds storage capacity

online reconstruction

(= ==

. _on/near Detector "‘f.ﬁ"‘ CBM Service Bldg. "73&"‘ 'Green Cube'
| s . : ? 'l‘ VI‘ »
= FEB . hub opto g DPB " FLIB  FLES
i 1 54 I X
‘:‘ T \ e %,
4 ,{3@‘\ |
i I
\‘: .!EE‘IT’ I g \ ~ G B / S
| S
ROC Tt | om
S e i j St ey to storage
o~ ontrol | X A
raw data e ' L) o5
w I N 2%
Eg‘ | I \g
‘|‘ '4 I ------------ yc-‘.] ..........
| R
| |ECS __oprical
: ial
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e data reduction and triggering is shifted entirely to software

* detector hits have (x,y,z,t) information, but no event information
e hits from different events may overlap in time

* event determination means 4D tracking (time and space points)

» 14000
(=)

TT

2000

l

hits

0000

8000

6000

4000

IIIIII IIIIIIIIII

2000

200 400 800 1000 1200
t{ns)

T

<

time

* though-put capacity of online computing determines detector performance
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two examples of modern 3D-detectors:
* the ALICE TPC after upgrade (2018)
* the CBM STS at SIS100 (2018/19)

both detector aim from unprecedented rates for these detector types
e ALICE TPC 50 KHz PbPb

* CBM STS 10 MHz AuAu

the realization of these detector is only possible with a paradigm change:

targeted performance of modern 3D-detectors is only possible with massive
online-computing

high performance computing (HPC) becomes part of the detector

Hans Rudolf Schmidt 30



EBERHARD KARLS

. UNIVERSITAT
Backup slides TURINGEN

Hans Rudolf Schmidt 31



EBERHARD KARLS

UNIVERSITAT
TUBINGEN
CBM online data flow
Front-end < Self-tri d front-end
Electronic FEE | = | FEE FEE | - | FEE Al hi:;gfﬁ::pedrzg FLES
. I TByte/s Total
Combiner | GBTX| |GBTX | |GBTX | |GBTX | Input Data Rate
* 1000 links
Data Processing S DPB
Board FLES Interface Board

* FPGA based

» Optical input links

* Fast PCle interface

* Large buffer memory

First-
level
Event
Selector

Permanent
Storage

Event selection in FLES
processor farm
* High-throughput online analysis
e full event reconstruction
e 107 Events/s

* Vectorization and many-core
architectures
e ~ 60.000 Cores

High-throughput
interval building
* InfiniBand
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. Time-slice sorting of detector hits:
First step in “pre-event” definition.

. Track finding — Cellular Automaton: - o
Which hits in the detector layers belong to the same track?
— large combinatorial problem
- well to be parallelized
— applicable to many-core CPU/GPU systems

. Track fitting — Kalman Filter:
Optimization of the track parameters.
— recursive least squares method, fast

. Event determination
Which tracks belong to same interaction? ®B o

. Particle finding: ) Q
Identify decay topologies and other signatures. ‘Q\
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