

Modern 3D-Detectors

Instrumentation for Particle Tracking in Nuclear Collisions

Outline

- "historic" 3D detectors
 - limited in speed, mostly visual
- modern 3D detectors
 - o two examples:
 - ALICE Time Projection Chamber after GEM upgrade
 - CBM Silicon Tracking System
 - modern detectors require fast, sophisticated online reconstruction software,
 - detection system = detector + high performance computing

Very First 3D Detector

tracks of an α -source in a cloud chamber

spatial resolution: < 1 mm

original Wilson Cloud Chamber (museum Cavendish laboratory) – Nobel prize 1927

sensitive time (by adiabatic expansion) : 0.01 sec

recovery time: 1-2 min (or longer)

integration time: $> 10^4 \,\mu s$

rate: $< 10^{-2} \text{ Hz}$

Best Spatial Resolution Ever to-Date...

Emulsion Chambers

spatial resolution given by grain size $-0.2 \mu m$

used from 1940 until today (e.g. **O**scillation **P**roject with **E**mulsion-tRacking **A**pparatus - **OPERA**)

one of the last of its kind...

spatial resolution: < 100 μm

BEBC - Big European Bubble chamber, in operation 1977 - 1984 at CERN during this time 6.3 M photos were taken (data taking rate ~ 10^{-2} Hz)

More visual 3D Detectors...

spark chamber dead time ~ up to *ms* (clearing field for ions)

streamer chamber

rate limited by optical readout

breakthrough: invention of wire chambers/drift chambers

→ electronic recording of 3d space points in kHz range...

Landscape of Discovery in Super-Dense Matter Physics

Landscape of Discovery in Super-Dense Matter Physics

Modern 3D Detectors

requirements for the exploration of the terra incognita:

- high multiplicity
- rate capability & radiation hardness
- low mass budget

in addition to:

- very good momentum resolution
- very good position/impact parameter resolution
- two-track resolution
- particle id
- ..

- in this talk the state-of-the-art will be discussed on the basis of the
- ALICE TPC-upgrade plans
- future CBM silicon tracking system (STS)

modern 3D detector require very careful optimization of its operation conditions

TPC - Principle

allows continuous 3D-tracking of high multiplicity events and PID

ALICE PbPb event

The Space Charge Problem

- due to their slower drift velocity positive ions accumulate in the drift space end eventually distort the drift field
- at 50 kHz interaction rate ions from 8000 events fill the drift space!

TPC-Limitations: Space Charge

"conventional" MWPC readout

time needed to "neutralize" ions

- present TPC employ MWPC with gain up to 10⁴, i.e. ion back flow (IBF) of 2x10³ ions/electron
- gating grid needed to suppress IBF
 - after electron drift (100 μs) the gate must be close for 200 μs to suppress back-drifting ions
 - total time of 300 μs limits the maximal trigger rate to 3 kHz (if one wants to avoid excessive space charge accumulation)
- ▶ in this configuration a TPC cannot be used for high luminosity experiments (e.g. after the ALICE upgrade or at the ILC/CLIC)

Readout Planes w/o IBF

Gas Electron Multiplier

Electron microscope photograph of a GEM foil

- GEM (Gas Electron Multiplier)
- MicroMegas

goal for IBF: < 1 % (<20 ions flow back into drift space at a gain of 2000)

reduction of IBF is achieved by a stack of 4 GEM planes and optimized transfer fields between GFMS

4-GEM Stack

conventional MWPC replaced by stack 4 GEM foils overall IBF depends on many factors (large parameter space):

- E_{T1,2,3} (transfer fields), E_{ind} (induction fields)
- E_{GEM1,2,3,4}
- hole geometry & alignment, ...

requires significant R&D

goal for IBF: < 1 % (< 20 ions flow back into drift space at a gain of 2000, $\varepsilon < 20$)

IBF vs. Energy Resolution

Basic caveat:

minimization of IBF reduces at the same time the transparency for electrons, i.e, the energy resolution....

Technical Design Report: base line solution with 4 GEM-system with IBF <1% and $\sigma(^{55}\text{Fe})$ <12%

Space Charge Distortions with IBF=1%

space charge distortion based on average space charge density at 50 kHz interaction rate, corresponding to a pile-up of positive ions from 8000 events

distortions in radial direction: dr < 19 cm

distortions in azimuthal direction: $rd\phi < 4 \text{ cm}$

required precision: ~ few 100 μm

can this be corrected? \rightarrow yes, but....

- correction must be done on the fly
- space charge distribution fluctuates (multiplicity, event rate, ionization) ~ 5%

Data Size & Online Reconstruction

typical TPC raw events size: 20 Mbyte

data rate @ 50 kHz: 1 TByte/s

exceeds storage band width by far

⇒ online data correction & compression

- the required compression (> factor 20) can only be achieved if tracks are online reconstructed based on an average distortion map, which must be updated every 15 min
 - → permanent storage
- the final correction is based on a high resolution distortion map, which must be updated every 5 ms
 - → requires external track reference from other detectors (ITS, TRD)

Performance: Momentum Resolution after Corrections

TPC momentum resolution for tracks matched with the ITS/TRD practically restored after 2nd reconstruction stage!

The CBM Silicon Tracking System

silicon sensors (pixel or strip) are inherently 2D-devices, they become 3D by stacking several sensors:

can a 3D-Silicon Tracking System meet the ambitious CBM requirements?

- excellent momentum resolution ($\Delta p/p \approx 1\%$) at low momenta (<10 GeV/c) \Leftrightarrow material budget
- simultaneous tracking of several hundred particles ⇔ granularity
- high collisions rate of up to 10 MHz (TPC 50 kHz) ⇔ readout and rad. hardness

I.1: Momentum Resolution & Material Budget

At SIS-energies (and design spatial resolution < 25 μ m) the momentum resolution is dominated by multiple scattering, i.e., for good momentum resolution the active area has to be practically massless....

- readout electronics outside of active area
 - ultra-thin readout cables
- ultra light support structure
 - carbon fiber
- 300 μm sensor with double sided readout

I.2: Multilayer Readout Cables

caveat 1: long readout cables to periphery has large capacity (noise)

caveat 2: spacer to decrease capacity of signal lines increases material budget

cable stack: thickness 0.11% X_0

signal lines: h=14 μ m Al, w=46 μ m

meshed spacer layer

cable design is a optimization between capacity (noise) and material budget (multiple scatt.)

I.3: Carbon Fiber Support Structures

caveat: light-weight support structure has to maintain mechanical precision < 100 μm

I.4: Simulation Results

material budget ranges from 0.3% X/X₀ (only sensor) to 1% X/X₀ (sensors + cables) resulting in:

- reconstruction efficiency up to ε≈98%
- momentum resolution Δp/p≈1%

II.1: Sensors

sensor:

- n-type silicon
- 300 μm thickness
- double sided readout

metal interconnect between strips

large number of masks, complicated production, yield?

granularity and space point resolution:

- strip pitch: 58 μm
- stereo angle between font and back strips: 7.5 °
- strip length: 2.2, 4.2, 6.2 cm

II.2: High Multiplicity Tracking & Granularity

fixed target experiments have steeply falling hit densities ⇒sensor geometry has to adapted accordingly

the CBM STS features 3 different sensor sizes and daisy chained combinations ⇒ many different basic "modules" ⇒ enormous complication for simulation and production

double hit probability for inner sensors below 3.6 % (7% at SIS 300) for Au+Au collisions

III.1 Rad. Hardness & Cooling

effects in high radiation environment:

- a. type inversion ⇒ end-of-lifetime criterion
- b. thermal runaway \Rightarrow keep sensors at -5°C all the time

b.

$$I_{leak} = \alpha V \Phi$$

$$I_{leak}(T) = I_{leak,293} \left(\frac{T}{293 \text{K}}\right)^2 \exp\left(-\frac{E_{\text{gap}}(T)}{2 \text{k}_{\text{B}}} \left(\frac{1}{T} - \frac{1}{293 \text{ K}}\right)\right)$$

- end-of-lifetime of sensor reached at 10¹⁴ n_{eq}/cm²
- 5-10 month of running at 10 MHz

leakage current increase with fluence f and temperature T ⇒ sensor cooling mandatory to avoid thermal runaway

III.2: Cooling

caveat: fast readout electronics produces 50 kW thermal power within insulation volume

Very efficient high power CO₂ cooling system under development to neutralize 50 kW thermal power from r/o electronics!

for comparison: CMS develops a 15 kW CO₂ cooling system for sLHC

III.1: Trigger & Readout

CBM will have a (quasi-) continuous beam and event rates (up to 10^7 Hz):

- trigger: no trigger
 - complex signatures for rare events (e.g. Ω \rightarrow charged hadrons) difficult to implement in hardware
 - extreme event rates set strong limits to trigger latency
- therefore: purely data driven readout with time-stamped data
- raw data rate: 1 TB/s exceeds storage capacity

III.2: Data Reduction

- data reduction and triggering is shifted entirely to software
- detector hits have (x,y,z,t) information, but no event information
- hits from different events may overlap in time
- event determination means 4D tracking (time and space points)

though-put capacity of online computing determines detector performance

Summary & Conclusions

two examples of modern 3D-detectors:

- the ALICE TPC after upgrade (2018)
- the CBM STS at SIS100 (2018/19)

both detector aim from unprecedented rates for these detector types

- ALICE TPC 50 KHz PbPb
- CBM STS 10 MHz AuAu

the realization of these detector is only possible with a paradigm change:

targeted performance of modern 3D-detectors is only possible with massive online-computing

high performance computing (HPC) becomes part of the detector

Backup slides

CBM online data flow

Steps of event reconstruction

1. Time-slice sorting of detector hits: First step in "pre-event" definition.

2. Track finding – Cellular Automaton: Which hits in the detector layers belong to the same track?

- large combinatorial problem
- well to be parallelized
- applicable to many-core CPU/GPU systems

Optimization of the track parameters.

- recursive least squares method, fast
- 4. Event determination Which tracks belong to same interaction?
- 5. Particle finding: *Identify decay topologies and other signatures.*

