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INTRODUCTION: THE IMPEDANCE 

s 

G. Rumolo 

◆  Wake field = Electromagnetic field generated by the beam 
interacting with its surroundings (vacuum pipe, etc.) 
§  Power loss 
§  Beam instabilities  

◆  Impedance = Fourier transform of the wake field (wake function) 

Change in  
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conductivity 
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INTRODUCTION: THE IMPEDANCE 

u  2 fundamental approximations behind the “conventional 
impedances / wakes” 
§  Rigid-beam approximation =>  

§  Impulse approximation => 

z = switness − ssource =Constant

υ Δp = F ds
0

L

∫
Wake potential 
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u  Longitudinal case 

u  Transverse case is more complicated 

§  Conventional definition 
 
 
§  … but several terms need to be added to correctly describe the 

beam dynamics  
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Fl ds
0

L
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Transverse wake 
function 
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Fr ds
0
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∫ = − e2 rsource Wr z( ) − e2 rwitness Dr z( ) − e2 ʹrsource Ar z( ) + ...

Driving (or 
dipolar) wake 

Angular wake => 
Fast damping in 
VEPP-2 and BEP 

Detuning (or 
quadrupolar) wake 
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u  The impedance is a complex function of frequency and at least 5 
contributions are needed to correctly characterized an equipment 
§  Longitudinal impedance 
§  Horizontal dipolar/driving impedance 
§  Vertical dipolar/driving impedance 
§  Horizontal quadrupolar/detuning impedance 
§  Vertical quadrupolar/detuning impedance 

In case of non axi-symmetric vacuum 
chambers (assuming that the particles 
are travelling at the speed of light => 

Assumption made in this talk)  
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◆  Frequency range of interest 
◆  Copper coating: why and which thickness? 
◆  Effect of transverse damper 
◆  Effects of other coatings (e.g. a-C) or surface treatments 

(e.g. LESS) to fight against e-cloud 
◆  Effect of HTS coating 
◆  Longitudinal weld 
◆  Pumping slots 
◆  Conclusions 

CONTENTS 

a-C = amorphous carbon 
LESS = Laser treatment of the surface 
HTS = High Temperature Superconductor 
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u  Cut-off frequency (above which modes are propagating) 

 

§  N.A. for LHC: b ≈ 2 cm => fcut-off  ≈ 5 GHz 

€ 

fcut−off
lowest [GHz] ≈ 10

b [cm]



Elias Métral, workshop "Beam Dynamics meets Vacuum, Collimation and Surfaces", Karlsruhe, Germany, 08-10/03/2017  

FREQUENCY RANGE OF INTEREST 

u  Cut-off frequency (above which modes are propagating) 

 
§  N.A. for LHC: b ≈ 2 cm => fcut-off  ≈ 5 GHz 

u  Lower limit => First Unstable (transverse) Betatron Line: 

§  N.A. for LHC: (1 - 0.31) × 11245 ≈ 8 kHz 

€ 

fcut−off
lowest [GHz] ≈ 10

b [cm]

fFUBL = n −Q( ) frev
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spectrum 

 
§  N.A. for LHC: τb (4 σ) 
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u  Some higher-order modes can also be 
excited and lead to longitudinal and/or 
transverse instabilities 
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spectrum 
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u  Some higher-order modes can also be 
excited and lead to longitudinal and/or 
transverse instabilities 

      => For LHC: from 8 kHz to few GHz f 

0=m
1=m

2=m

Power spectrum  

Extends up to ~ ± 1 / τb 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  Keep the resistivity as low as possible for 3 reasons 
§  Power loss => High-frequency 
§  Transverse Coupled-Bunch (Resistive-Wall) Instability: TCBI => 

Low-frequency 
§  Transverse Mode-Coupling Instability: TMCI => High-frequency 
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u  1) Power loss => Due to real part of the longitudinal impedance 
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§  For SS for instance, the power loss would be ~ 30 times more 
§  Thickness of Cu (20 K, 7 TeV) coating => 1 (few) µm enough 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  1) Power loss => Due to real part of the longitudinal impedance 
§  For SS for instance, the power loss would be ~ 30 times more 
§  Thickness of Cu (20 K, 7 TeV) coating => 1 (few) µm enough 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  2) TCBI => Due to real part of the transverse impedance 



Elias Métral, workshop "Beam Dynamics meets Vacuum, Collimation and Surfaces", Karlsruhe, Germany, 08-10/03/2017  

COPPER COATING: WHY AND WHICH THICKNESS? 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  2) TCBI => Due to real part of the transverse impedance 

§  Previous plot reveals why in this case few tens / hundreds of µm 
are needed (at low frequency, IF we are in the thick-wall regime) 

§  This thick-wall regime is for instance not the case with the LHC 
collimators… 
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LHC beam pipe: round, 20 mm radius, 1 m long 
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LHC beam pipe: round, 20 mm radius, 1 m long 
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LHC beam pipe: round, 2 mm radius, 1 m long 
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LHC beam pipe: round, 2 mm radius, 1 m long 
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LHC beam pipe: round, 1 m long 
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LHC beam pipe: round, 1 m long 
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LHC beam pipe: round, 1 m long 
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LHC beam pipe: round, 1 m long 
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SS beam pipe with 20 mm radius  
and 0 µm copper coating (room temp.) 
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SS beam pipe with 20 mm radius  
and 1 µm copper coating (room temp.) 
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SS beam pipe with 20 mm radius  
and 5 µm copper coating (room temp.) 
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SS beam pipe with 20 mm radius  
and 10 µm copper coating (room temp.) 
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SS beam pipe with 20 mm radius  
and 50 µm copper coating (room temp.) 

100 105 108
0.01

0.05
0.10

0.50
1

5
10

f [Hz]

R
at
io

Re 
Im 



Elias Métral, workshop "Beam Dynamics meets Vacuum, Collimation and Surfaces", Karlsruhe, Germany, 08-10/03/2017  

SS beam pipe with 20 mm radius  
and 1000 µm = 1 mm copper coating (room temp.) 
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Graphite beam pipe with 2 mm radius  
and 0 µm copper coating (room temp.) 
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Graphite beam pipe with 2 mm radius  
and 1 µm copper coating (room temp.) 
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Graphite beam pipe with 2 mm radius  
and 5 µm copper coating (room temp.) 
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Graphite beam pipe with 2 mm radius  
and 10 µm copper coating (room temp.) 
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Graphite beam pipe with 2 mm radius  
and 50 µm copper coating (room temp.) 
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Copper (room temp.) beam pipe with 20 mm radius  
and 0 µm graphite coating 
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Copper (room temp.) beam pipe with 20 mm radius  
and 1 µm graphite coating 
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Copper (room temp.) beam pipe with 20 mm radius  
and 5 µm graphite coating 
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Copper (room temp.) beam pipe with 20 mm radius  
and 10 µm graphite coating 

100 105 108
1

2

5

10

20

f [Hz]

R
at
io

Re 
Im 



Elias Métral, workshop "Beam Dynamics meets Vacuum, Collimation and Surfaces", Karlsruhe, Germany, 08-10/03/2017  

Copper (room temp.) beam pipe with 20 mm radius  
and 50 µm graphite coating 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  3) TMCI => (Mainly) due to 
i m a g i n a r y p a r t o f t h e 
transverse impedance 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  3) TMCI => (Mainly) due to 
i m a g i n a r y p a r t o f t h e 
transverse impedance 

§  Example case (~ LHC) 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  3) TMCI => (Mainly) due to 
i m a g i n a r y p a r t o f t h e 
transverse impedance 

§  Example case (~ LHC) 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  3) TMCI => (Mainly) due to 
i m a g i n a r y p a r t o f t h e 
transverse impedance 

§  Example case (~ LHC) 
§  Approximation to find the 
threshold => When tune  
shift of mode 0 is ~ - Qs 
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COPPER COATING: WHY AND WHICH THICKNESS? 

u  3) TMCI => (Mainly) due to 
i m a g i n a r y p a r t o f t h e 
transverse impedance 

 
§  Example case (~ LHC) 
§  Approximation to find the 
threshold => When tune  
shift of mode 0 is ~ - Qs 

€ 

Im Zy
eff( ) < Im Zy

eff( )max =
4 π Et /e( ) τ b Qs

Nb e βy
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= 2E - 3
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Weighted by the bunch 
spectrum (mode 0), 

which also depends on 
bunch length… 
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EFFECT OF THE (RESISTIVE) TRANSVERSE DAMPER 

u  A (bunch by bunch) resistive transverse damper is usually used to 
damp the TCBI => IF instability rise-time is longer than ~ 10 turns 
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EFFECT OF THE (RESISTIVE) TRANSVERSE DAMPER 

u  A (bunch by bunch) resistive transverse damper is usually used to 
damp the TCBI => IF instability rise-time is longer than ~ 10 turns 

u  Depending on Q’ (chromaticity) and the transverse damper gain, a 
certain amount of non-linearities (Landau octupoles) is also needed 
to stabilize the single-bunch instabilities by Landau damping 
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EFFECT OF THE (RESISTIVE) TRANSVERSE DAMPER 

u  A (bunch by bunch) resistive transverse damper is usually used to 
damp the TCBI => IF instability rise-time is longer than ~ 10 turns 

u  Depending on Q’ (chromaticity) and the transverse damper gain, a 
certain amount of non-linearities (Landau octupoles) is also needed 
to stabilize the single-bunch instabilities by Landau damping 

u  Recent studies revealed that for Q’ = 0 the resistive transverse 
damper is destabilising (for the single bunch) and shed a light on 
the physical mechanism 
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u  Destabilising effect of the resistive transverse damper (in red below)  
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u  Destabilising effect of the resistive transverse damper (in red below)  

§  This is the interaction 
between modes - 1 and 0 
through the damper which 
creates the instability 
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u  Destabilising effect of the resistive transverse damper (in red below)  

§  This is the interaction 
between modes - 1 and 0 
through the damper which 
creates the instability 

§  The “coupling” between the 
2 modes pushes apart the 
instability growth rates and 
as the lowest one is 0, it 
becomes negative 
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EFFECT OF THE (RESISTIVE) TRANSVERSE DAMPER 

u  The consequences on the Landau damping are currently under 
investigation (as the assumption of independent modes cannot be 
made anymore) 
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EFFECT OF THE (RESISTIVE) TRANSVERSE DAMPER 

u  The consequences on the Landau damping are currently under 
investigation (as the assumption of independent modes cannot be 
made anymore) 

u  However, with a sufficiently strong (and low noise) transverse 
damper, the TCBI (low frequency) should not be a problem anymore 
=> Particular attention should be paid to the high frequency (single-
bunch) regime 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

u  This will increase the resistivity (or roughness) at high frequency => 
Mainly the imaginary parts of the longitudinal and transverse 
impedances  
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

u  This will increase the resistivity (or roughness) at high frequency => 
Mainly the imaginary parts of the longitudinal and transverse 
impedances  
§  Increase of imaginary part of longitudinal impedance at high 

frequency => More critical for the loss of longitudinal Landau 
damping 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

u  This will increase the resistivity (or roughness) at high frequency => 
Mainly the imaginary parts of the longitudinal and transverse 
impedances  
§  Increase of imaginary part of longitudinal impedance at high 

frequency => More critical for the loss of longitudinal Landau 
damping 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

§  Increase of imaginary part of transverse impedance at high 
frequency => More critical for TMCI 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

§  Increase of imaginary part of transverse impedance at high 
frequency => More critical for TMCI 
•  Example case of FCC-hh, where laser treatment was 

proposed as baseline for SEY reduction 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

§  Increase of imaginary part of transverse impedance at high 
frequency => More critical for TMCI 
•  Example case of FCC-hh, where laser treatment was 

proposed as baseline for SEY reduction 

  
Sergey Arsenyev 

Dotted line 
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COATING (e.g. a-C) OR SURFACE TREATMENT (e.g. LESS)  
TO FIGHT AGAINST E-CLOUD 

§  Increase of imaginary part of transverse impedance at high 
frequency => More critical for TMCI 
•  Example case of FCC-hh, where laser treatment was 

proposed as baseline for SEY reduction 

 => Measurements at low temperature and high magnetic 
field are required (and planned)  

Sergey Arsenyev 

Dotted line 
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HTS COATING for FCC-hh: YBCO (from Sergio Calatroni)  



Elias Métral, workshop "Beam Dynamics meets Vacuum, Collimation and Surfaces", Karlsruhe, Germany, 08-10/03/2017  

HTS COATING for FCC-hh: YBCO (from Sergio Calatroni)  
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HTS COATING for FCC-hh: YBCO (from Sergio Calatroni)  
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HTS COATING for FCC-hh: YBCO (from Sergio Calatroni)  
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§  Much better at low and intermediate frequencies  
§  Pay attention to higher frequencies as it could impact TMCI 
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Longitudinal weld 
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Longitudinal weld 

◆  Increased factor deduced from 3D CST simulations with 50 µm of 
copper on top of SS and assuming a 2 mm high weld in SS 
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Saw teeth 

~ 40 µm 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500 µm 

Beam screen tube (Stainless-Steel) 

Copper coating 
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Longitudinal weld 

Carlo Zannini 

◆  Increased factor deduced from 3D CST simulations with 50 µm of 
copper on top of SS and assuming a 2 mm high weld in SS 
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Pumping slots 

Saw teeth 
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40 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~ 500 µm 

Beam screen tube (Stainless-Steel) 

Copper coating 

2 b 
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Longitudinal weld 

◆  Effect on the power loss 
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Longitudinal weld 

◆  Effect on the power loss 
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Longitudinal weld 

◆  Effect on the power loss 

 
=> The estimated increase of the power loss by ~ 50% is in 
agreement with the previous simulations (high frequency effect) 
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Pumping slots 
Longitudinal weld 

Pumping slots 

Saw teeth 

~ 40 µm 

~ 500 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Beam screen tube (Stainless-Steel) 

Copper coating 
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Pumping slots 
Longitudinal weld 

Pumping slots 

Saw teeth 

~ 40 µm 

~ 500 µm 

Beam screen tube (Stainless-Steel) 

Copper coating 

2 b 

◆  Fraction of surface covered by the holes 
§  In the arcs: η = 4.0% 
§  In the LSS: η = 1.8% to 2.6% (depends on screen Φ) 
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Pumping slots 
Longitudinal weld 

Pumping slots 

Saw teeth 

~ 40 µm 

~ 500 µm 

Beam screen tube (Stainless-Steel) 

Copper coating 

2 b 

◆  Fraction of surface covered by the holes 
§  In the arcs: η = 4.0% 
§  In the LSS: η = 1.8% to 2.6% (depends on screen Φ) 

u  This will mainly increase the imaginary part of the longitudinal and 
transverse impedances (=> TMCI) 
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Total length covered  
by the holes 



Elias Métral, workshop "Beam Dynamics meets Vacuum, Collimation and Surfaces", Karlsruhe, Germany, 08-10/03/2017  

Pumping slots 
Longitudinal weld 

Pumping slots 

Saw teeth 

~ 40 µm 

~ 500 µm 

Beam screen tube (Stainless-Steel) 

Copper coating 

2 b 

◆  Fraction of surface covered by the holes 
§  In the arcs: η = 4.0% 
§  In the LSS: η = 1.8% to 2.6% (depends on screen Φ) 

u  This will mainly increase the imaginary part of the longitudinal and 
transverse impedances (=> TMCI) 

§  Recommendations => Minimize the numerator and maximize the 
denominator… + Optimize the shape of the slots to minimize the 
perturbation of the induced current: elongated and rounded 
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Pumping slots 
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Pumping slots 

Saw teeth 

~ 40 µm 

~ 500 µm 

Beam screen tube (Stainless-Steel) 

Copper coating 

2 b 

◆  Fraction of surface covered by the holes 
§  In the arcs: η = 4.0% 
§  In the LSS: η = 1.8% to 2.6% (depends on screen Φ) 

u  This will mainly increase the imaginary part of the longitudinal and 
transverse impedances (=> TMCI) 

§  Recommendations => Minimize the numerator and maximize the 
denominator… + Optimize the shape of the slots to minimize the 
perturbation of the induced current: elongated and rounded 

u  In addition, some trapped modes could be created => Randomization 
of the slots lengths (between 6,7,8,9,10 mm with average at 8 mm) + 
randomization of the slot spacing   

Zl n( )
n

∝ j η L
b

Zy ∝ j η L
b3

Total length covered  
by the holes 
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Conclusions 

◆  Impact of impedance effects on beam chamber specification is 
relatively well understood 

◆  Next challenges might come from the correct characterization (vs. 
frequency) of some coatings or surface treatment 

◆  The transitions between the beam pipes and any equipment should 
also be optimized (to be as smooth as possible => Famous 15 deg for 
LHC but depends on the particular case), as well as robust designs 
when RF fingers are involved (for longitudinal and/or transverse 
displacements) 

 
Example of RF fingers:  
PIMs = Plug-In Modules 
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Many thanks for your attention! 
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Courtesy of N. Kos 

APPENDIX A: LHC BEAM SCREENS 
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Courtesy of N. Kos 
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APPENDIX B: RRR (Residual Resistivity Ratio) 

u  Reduction of the resistivity with temperature => The resistivity 
decreases with temperature towards a minimum (determined by 
purity) and the RRR is defined as the ratio of the DC resistivity at 
room temperature to its cold-DC lower limit  

“Handbook of Accelerator Physics and Engineering”, 
2nd Printing, Edited by A.W. Chao and M. Tigner, p. 368 
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APPENDIX C: MAGNETO-RESISTANCE 

u  Increase of the resistivity with magnetic field => Kohler’s rule 
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APPENDIX D: PUMPING HOLES 
◆  The parameters for the current beam screen are 

§  Length of the slots: L = 6,7,8,9 and 10 mm => Laverage = 8 mm 
§  Width of the slots: 
•  In the arcs: W = 1.5 mm 
•  In the LSS: W = 1.0 mm 

§  Beam screen thickness: 
•  In the arcs: T = 1 mm SS + 0.075 mm Cu = 1.075 mm 
•  In the LSS: T = 0.6 mm SS + 0.075 mm Cu = 0.675 mm  


