

BES II and Future Dilepton Measurements at STAR

DANIEL BRANDENBURG - RICE UNIVERSITY

CBM-STAR Joint Workshop,

TU Darmstadt, Germany

Saturday, March 18, 2017

Outline

- Motivation for dilepton physics at STAR
- Dileptons results in Beam Energy Scan Phase I
- Beam Energy Scan Phase II
 - Physics goals
 - Detector upgrades
- Near future dilepton studies at STAR
 - Measurement of $\mu^+\mu^-$ continuum at STAR
 - Studies of correlated charm in IMR
 - Low p_T dilepton pairs in Isobar collisions
- Summary

Motivation for Dilepton Physics at STAR

Dileptons provide an excellent penetrating probe of the medium

- Leptons have low interaction cross section with QGP medium – they carry information to the final state
- Dilepton pairs are created throughout the entire lifetime of the system

Low Mass Range (LMR) $M_{\parallel} < 1.1 \text{ GeV/c^2}$

- In-medium modification of vector mesons
- Link to chiral symmetry restoration

Intermediate Mass Range (IMR) $1.1 < M_{\parallel} < 3.0 \text{ GeV/c^2}$

- Dominant contribution from semi-leptonic correlated charm decays
- QGP thermal radiation

High Mass Range (HMR) $M_{\parallel} > 3.0 \text{ GeV/c^2}$

• Primordial emission, Drell-Yan, J/ ψ and Upsilon suppression

NA60 : Low Mass Range

PRL 96 (2006) 162302

NA60's dimuon measurement:

- Compare ρ broadening/melting models
- Data favors Rapp/Wambach model - ρ broadening through interactions with hadronic medium
- Link to chiral symmetry restoration?

NA60 : Intermediate Mass Region

PRL 100 (2008) 022302

Measurment of inverse slope parameter (T_{eff}) from m_T distribution

- T_{eff} = 205 \pm 12 MeV
- Indicative of thermal radiation from partonic medium
- No mass dependence visible in IMR

Challenge to disentangle correlated charm from QGP thermal radiation

 STAR upgrades (Muon Telescope Detector & Heavy Flavor Tracker) will help – more later

STAR Dielectron Results in Beam Energy Scan Phase I

STAR Dielectrons in BES I

- BES I beam energies : $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27.0, 39.0, and 62.4 GeV$
- Insufficient statistics available below 19.6 GeV for dielectron analyses
- Probe a wide range of initial conditions
 Approximately constant total baryon
- Approximately constant total baryon density in the $\sqrt{S_{NN}}$ range from 19.6 to 200 GeV

How does LMR excess yield evolve?

- Are in-medium modification effects visible at all energies down to $\sqrt{s_{NN}}$ = 19.6 GeV?
- Is the enhancement consistent with model predictions at these energies?

STAR Dielectrons in BES I

8

0.8

STAR Acceptance Corrected Excess Spectra Acceptance-corrected spectra for Au+Au at 27, 39,

- Au+Au at 19.6 and 200 GeV
- Normalized to $(dN_{ch}/dy)_{y=0}$ to cancel out volume effects
- 17.3 GeV (NA60) and 19.6 GeV consistent

Hohler & Rapp: "Is p-meson melting compatible with chiral restoration?"

d²N/dydM)/(dN_{ch}/dy) (20 MeV)⁻¹

10⁻⁵ .

0⁻⁶

10-7

10⁻⁸

10⁻⁹

10⁻¹⁰

STAR 🛠

Link to Chiral Symmetry Restoration

Strong Experimental evidence that ρ meson "melts"

- Input for Phenomenological approach:
- Vector meson SF from phenomenological model, verified against experimental data
- T dependence of condensate, from lattice QCD

QCD Sum Rules : constrain vector / axial vector SFs individually

$$\frac{1}{M^2} \int ds \frac{\rho_{V/A}(s)}{s} e^{-s/M^2} = \sum_n C_n \langle O_n \rangle$$

Weinberg sum rules : difference between vector & axial vector SFs $\int ds(\rho_V - \rho_A)s^n = f_n$

Quantatively compatible with (approach to) chiral restoration

Hohler, Rapp *PLB 731 (2014) 103* But, still need microscopic calculations of $a_1(1260)$... (Massive Yang-Mills)

Link to Chiral Symmetry Restoration

Effective Chiral Lagrangian

- Gauge ρ and \mathbf{a}_1 into chiral pion Lagrangian
 - Massive Yang Mills in hot pion gas starting point for evaluation of chiral restoration in medium

Beam Energy Scan Phase II 2019 - 2020

RHIC Beam Energy Scan Phase II

Purpose: Refine our understanding of the phase structures of QCD matter

- Beam time : 2019 2020
- Revisit lower BES I energies (19.6 GeV and below), possibly add 9.1 GeV
- Gain significantly more statistics necessary for dilepton measurements!
- Systematically study dielectron continuum from $\sqrt{s_{NN}}$ = 7.7 to 19.6 GeV

Table 2. Event statistics (in millions)	needed for	Beam Energy	gy Scan Pha	se-II for vari	ous observables.
Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6
u_B (MeV) in 0-5% central collisions	420	370	315	260	205
Observables					
$\overline{R_{CP}}$ up to $p_T = 5 \text{ GeV}/c$	_		160	125	92
Elliptic Flow (\$\$ mesons)	100	150	200	200	400
Chiral Magnetic Effect	50	50	50	50	50
Directed Flow (protons)	50	75	100	100	200
Azimuthal Femtoscopy (protons)	35	40	50	65	80
Net-Proton Kurtosis	80	100	120	200	400
Dileptons	100	160	230	300	400
Required Number of Events	100	160	230	300	400

STAR Whitepaper for BES II

Dileptons in BES II

- BES I : $\sqrt{s_{NN}}$ = 19.6 to 62.4 GeV
- Dilepton emission dominant in T_c region
- ~constant total baryon density
- Emission proportional to lifetime

BES II : $\sqrt{s_{NN}}$ = 7.7 to 19.6 GeV

- Average temperature of medium ~constant
- Probe life time + baryon density dependence of the ρ-meson spectral function

Collision energy

Dileptons in BES II

- BES I : $\sqrt{s_{NN}}$ = 19.6 to 62.4 GeV
- Dilepton emission dominant in T_c region
- ~constant total baryon density
- Emission proportional to lifetime

BES II : $\sqrt{s_{NN}}$ = 7.7 to 19.6 GeV

- Average temperature of medium ~constant
- Probe life time + baryon density dependence of the ρ-meson spectral function
- Total baryon density expected to increase by ~2x
- Close to QCD critical point?
 - Increase in correlation length
 - Critical slow down anomalous increase in fireball lifetime
- Linking top RHIC energies with SPS, FAIR energies
- Comparison with NA60, HADES, CBM
- At FAIR energies, probe lifetime + total baryon density + temperature

NA60+ proposed at SPS – overlap with RHIC and FAIR

Collision energy

BES II Detector Upgrades : iTPC

STAR proposal to upgrade the inner sector of its TPC

w/ run11 acceptance

w/ cocktail mas

0.8

M_{ee} GeV/c²

w/ flat mass

- Increase rapidity coverage
- Lowers p_{τ} threshold •
- Improves dE/dx (PID) resolution

Substantial improve dielectron systematics

- Systematics expected to be reduced by ~2x
- Improved PID \rightarrow increased electron purity
- Lower p_T threshold \rightarrow better acceptance in LMR ٠

BES II Detector Upgrades : eTOF

STAR proposal to install CBM TOF

- Endcap TOF (eTOF) mounted on east pole tip
- Increases PID rapidity coverage
- Takes advantage of large iTPC coverage

Dielectron Measurement:

• Allows rapidity differential

- LMR excess expected to depend on total baryon density
- π yields drop by 2x from y=0 to y=1.2
 → "baryon density" drops by factor of two.
- Analysis at y=1.2 is equivalent to lowering the beam energy

Near Future STAR Dilepton Measurements current - 2018

Measurements of $\mu^+\mu^-$ Continuum at STAR

• STAR's Muon Telescope Detector upgrade (completed 2014) allows for new studies of the dimuon continuum at RHIC energies with STAR.

Species	Energy (GeV)	~Sampled Luminosity	$22 \times 10^{\circ}$ STAR Preliminary $20 = 2015 \text{ p+p at } \sqrt{s} = 200 \text{ GeV}$
p+p (63% MTD)	500	28 pb ⁻¹	$ \begin{array}{c} $
p+p	200	122 pb ⁻¹	Image: Sign and
p+Au	200	409 nb ⁻¹	10 Signal 10 Signal 10 Signal ↓ ■
d+Au	200	94 nb ⁻¹	
Au+Au 2014	200	14 nb ⁻¹	4 ψ(2S)
Au+Au 2016	200	12 nb ⁻¹	
			$M_{\rm uu}$ (GeV/c ²)

- High quality p+p data set : provides baseline for Au+Au analyses
 - Clear ω , ρ , J/ ψ , and ψ (2S) peaks visible in p+p collisions @ $\sqrt{s_{NN}}$ = 200 GeV
- High statistic Au+Au data samples triggered by dedicated dimuon trigger
- Dimuon channel fewer background source in LMR compared to e^+e^- channel
- Analysis of data from p+p and Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV is ongoing

Disentangling Correlated Charm in IMR

Heavy Flavor Tracker:

- Provides precise tracking
- Allows charm to be better distinguished via secondary vertex reconstruction
- Analyses ongoing with 2014 & 2016 data

Muon Telescope Detector:

- Allows for a dedicated $e-\mu$ trigger
- Gain handle on charm contribution via $e-\mu$ correlation
- Study possible charm modification in medium

Isobaric Collisions : Low p_T Excess

- STAR and ALICE have observed significant excess production of J/ ψ in peripheral A+A collisions at low p_T (p_T < 300 MeV/c) d^{4} 10²
- Two potential sources:
 - Photo-nuclear $\propto Z^2$
 - Photon-Photon $\propto Z^4$

Investigate Z-dependence of low- p_T dielectron excess:

- Measure & compare in A=96 isobars:
 - ${}^{96}_{44}$ Ru + ${}^{96}_{44}$ Ru
 - $\frac{96}{40}$ Zr + $\frac{96}{40}$ Zr

Proposed for 2018

Summary

- At SPS, NA60 and CERES demonstrated the physics potential of accurate dilepton measurements
- STAR has developed a strong dilepton program
 - Detailed study of dielectron production in Au+Au and U+U @ top RHIC energy
 - BES I Allowed measurement of low mass excess down to 19.6 GeV, compare with SPS energy
- Progress in thermal field theory computations of dilepton production in heavy-ion collisions has led to robust description of LMR excess
- BES Phase II (2019-2020): systematic dilepton measurements down to $\sqrt{s_{NN}}$ = 7.7 GeV
 - Probe dependence on total baryon density
 - Measure p_T distribution's inverse slope parameter (T_{eff})
 - Look for anomalous increase in yield \rightarrow indicative of critical behavior
 - Utilize iTPC and eTOF upgrades to reduce systematic uncertainties & add rapidity differential measurements
- Near Future dilepton measurements at STAR
 - New STAR measurements of $\mu^+\mu^-$ continuum thanks to MTD upgrade
 - New methods of distinguishing correlated charm contributions (MTD and HFT)
 - Investigation of low $p_{\rm T}$ excess dilepton yield through isobaric collisions

Thank you

AuAu@200 GeV, 19.6 GeV STAR, PLB 750 (2015) 64

Isobaric collisions at RHIC in 2018

Quantities	Systems				
	U+U	Ru+Ru	Zr+Zr		
Centrality	60-80	47-75	47-75		
Multiplicity ($ \eta < 0.5$)	12-52	12-52	12-52		
N _{part}	21 ± 1	21 ± 1	21 ± 1		
$B^{2}(fm^{-4})$	30.8 ± 0.1	30.1 ± 0.1	26.2 ± 0.1		
B^4 (fm ⁻⁸)	1984 ± 4	2121 ± 4	1672 ± 4		

source: STAR Note 657 RHIC Beam Use Request For Runs 17 and 18 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0657

Table 5.2: Results obtained from the Glauber model calculations [87] for different colliding systems. The estimations of the magnetic fields are done at the time of the collisions (t=0) and at the center of the participant zone. The multiplicity is obtained using two-component model that is tuned to fit Au+Au data.

Physics process	47-75% Zr+Zr (data/cocktail)	47-75% Ru+Ru (data/cocktail)	Difference between Zr+Zr and Ru+Ru
Photonuclear	14.3 ± 0.4	16.1 ± 0.4	$1.8 \pm 0.6 (3.0 \sigma)$
Two-photon	14.2 ± 0.4	17.4 ± 0.4	$3.2 \pm 0.6 (5.3 \sigma)$

Table 5.3: The expected di-electron data over cocktail ratios in the mass region 0.4-0.76 GeV/c^2 for $p_T < 0.15 \text{ GeV/c}$ with 1.2 billion minimum-bias isobar collisions and the projected differences for the two physics scenarios in Zr+Zr and Ru+Ru collisions.

Physics process	47-75% Zr+Zr (data/cocktail)	47-75% Ru+Ru (data/cocktail)	Differences between Zr+Zr and Ru+Ru
Photonuclear	17.5 ± 1.7	20.0 ± 1.7	$2.5 \pm 2.4 (1.0 \sigma)$
Two-photon	17.3 ± 1.7	21.8 ± 1.7	$4.5 \pm 2.4 (1.9 \sigma)$

Table 5.4: The expected di-electron data over cocktail ratios in the mass region 3.0-3.2 GeV/c² for $p_T < 0.15$ GeV/c with 1.2 billion minimum-bias isobar collisions and the projected differences for the two physics scenarios in Zr+Zr and Ru+Ru collisions.

Excess yield and Medium Lifetime

- Normalized excess yields in LMR proportional to medium life time (QGP+HG) for Vs_{NN}=17.3–200 GeV
 - nearly constant total baryon density
 - emission rates dominated around T_c
- Yields in U+U@193GeV and Au+Au@200GeV
 - higher yields in central than in lower energies
 - observe increase from peripheral to central

Indications of longer medium lifetime in central UU@193GeV and central AuAu@200GeV

First Measurements of Dielectron V₂ STAR, PRC 90 (2014) 64904

\succ challenge: isolate v₂ of excess dielectrons

$$v_2^{\text{total}}(m_{ee}) = v_2^{\text{signal}} \left[\frac{N_S}{N_B + N_S} \right] (m_{ee}) + v_2^{\text{background}} \left[1 - \frac{N_S}{N_B + N_S} \right] (m_{ee})$$

cocktail simulations based on published light-hadron v₂ measurements

v₂ from π⁰ Dalitz decay consistent with simulations based on published π v₂

Dielectron v₂ : proof of principle

PRC 90 (2014) 64904

- based on combined Run 10 and 11 data (760M events)
- p_T integrated v_2 of dielectrons in STAR acceptance

What to expect at RHIC

Opportunities:

- expect significant increase of partonic source contribution
- Beam Energy Scan provides unique opportunities to
 - systematically study in-medium ρ broadening
 - on-set of QGP thermal radiation

Challenges:

- increased particle multiplicities at higher Vs_{NN} lead to significant increase in combinatorial backgrounds
- STAR at 200 GeV for M_{ee}^{\sim} 0.5 GeV/ c^2
 - p+p: S/B~1/10
 - Au+Au: S/B ~1/250

30

$\mu^+\mu^-$ in Run14 Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV

Data Triggered by dedicated Dimuon Trigger

In 60-80% Au+Au :

 \rightarrow Clear ϕ and J/ ψ peaks

→S/B > ~1/10 (~1/100 to 1/250 in e^+e^-)

Significantly more data in semicentral and central collisions

 $J/\psi R_{AA}$

Muon Telescope Detector (MTD)

- |η|< 0.5
- Azimuthal coverage ~ 45%
- Precise timing σ ~100 picoseconds
- Precise spatial resolution ~1 cm

- →Excess is consistent in Au+Au and U+U
- →Excess cannot be explained by hadronic contributions modified by medium

STAR Dielectron Results in Au+Au & U+U Collisions @ RHIC Top Energies

Dielectrons in Au+Au @ $\sqrt{s_{NN}}$ =200 GeV

R. Rapp, Phys.Rev. C 63 (2001) 054907 O. Linnyk et al., Phys. Rev. C 85 024910 (2012)

Low Mass Range

- Significant enhancement w.r.t. hadronic cocktail ${\rm w/o}~\rho$

Intermediate Mass Range

- Dominant contribution from correlated charm decay
- Consistent with cocktail within uncertainties

Heavy Flavor Tracker Upgrade:

Data from 2014+2016

- Includes Heavy Flavor Tracker upgrade for precise secondary vertex reconstruction
- Will help disentangle contributions in IMR (Charm modification, QGP thermal radiation, etc.)
- Analyses are ongoing

STAR 🛠

- Data/Cocktail "enhancement factor" in LMR does not show strong dependence on centrality or p_{T}
- Model calculations (Rapp & PHSD) give a reasonably good description across p_T and centrality differentials.

Daniel Brandenburg | Rice University

10 Expected to have ~20% higher energy density compared to Au+Au @ 200 GeV

- Kikola et al., PRC84 054907 2011
- Expect longer medium lifetime
- Expect higher excess yield in LMR

Significant excess yield in ρ -like mass region ($300 < M_{ee} < 760 \text{ MeV/c}^2$)

- Data/cocktail = 2.1 ± 0.1 (stat) ± 0.2 (syst) ± 0.3 (cocktail)
- Large contribution (~48%) from charm in this range
 - σ_{cc} =797 µb, σ_{bb} =3.7 µb, σ_{DY} =42nb
- Model vs. data shows good agreement

Model simulation:

3/18/17

R. Rapp – Adv. High energy Phys. (2013) 148253 Cocktail simulations: STAR, PRC 92 (2015) 024912

Dielctrons in Au+Au and U+U

What have we learned?

- Vacuum ρ disfavored by data
- Both Rapp & PHSD models consistently describes the data
- LMR excess shows little dependence on p_T or centrality

Dielctrons in Au+Au and U+U

What have we learned?

- Vacuum ρ disfavored by data
- Both Rapp & PHSD models consistently describes the data
- LMR excess shows little dependence on p_T or centrality

Strong motivation to further explore production dynamics + models' ability to describe data

• measure excess yield in ρ -like mass region vs. $\sqrt{s_{NN}}$

