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Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory




Extremes in low-energy nuclear physics

@ Extremes of nuclear existence: driplines, superheavies, . ..

@ Extremes in the heavens: supernovae, neutron stars, . ..

@ We want to extrapolate reliably with error estimates,
connect to and exploit known microscopic physics

@ Shakespeare’s Othello (Act 5, Scene 2)

| pray you, in your letters,

When you shall these unlucky deeds relate,

Speak of me as | am; nothing extenuate,

Nor set down aught in malice. Then must you speak
Of one that lov'd not wisely but too well;

Of one not easily jealous, but being wrought,
Perplexd in the extreme ...

@ To avoid being “perplex’d” = go to low resolution!



Principle of any effective low-energy description
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Principle of any effective low-energy description

@ If system is probed at low energies, fine details not resolved



Principle of any effective low-energy description

@ If system is probed at low energies, fine details not resolved
e Use low-energy variables for low-energy processes

e Short-distance structure can be replaced by something simpler
without distorting low-energy observables

e Physics interpretation can change with resolution!
@ Could be a model or systematic (e.g., effective field theory)



Principle of any effective low-energy description

@ If system is probed at low energies, fine details not resolved
e Use low-energy variables for low-energy processes

e Short-distance structure can be replaced by something simpler
without distorting low-energy observables

e Physics interpretation can change with resolution!
@ Could be a model or systematic (e.g., effective field theory)
@ Low density < low interaction energy < low resolution (?)



Nuclei at very low resolution

@ If separation of scales is
sufficient, then EFT with
pointlike interactions is
efficient (e.g., kKR < 1)

@ Universal properties (large as)

e connect to cold atom physics
@ low-density neutron matter
e e.g., Efimov physics
@ Pionless EFT
e e.g., np — dvy with
Ei, ~ 0.02-0.2 MeV
@ Halo EFT
@ Byaience K Beore, Eex

@ na-system (Bedaque et al.) or
aa-system (Higa et al.) or ...

Proton Halo
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Two-Neutron Halo

Here: focus on systems where pion exchange is resolved



S-wave NN potential in momentum space
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Vieo(k, k') = /dsrjo(kr) V(r)jo(K'r) = (k|Vi—o|k’) = Vig matrix

@ Momentum units (% = ¢ = 1): typical relative momentum
in large nucleus ~ 1fm~" ~ 200 MeV but . ..

@ Repulsive core = large high-k (= 2fm~') components



S-wave NN potential in momentum space

k' (fm™")
300 Frr e
1SO channel - 1
200 B
| |
= i 4 0.5
v [ repulsive I 27 I ]
= j00[ core | o, w, o | ]
N [ [ 1 (fm)
= \ | 0
[ ‘
0 ‘ L ‘ ‘
: Bonn 05
L Reido3
-100F  AVI8
H r [fm]
USSR T S T ST T S N ST SN S S Y SO SO S ¥ 1
0 0.5 1 15 2 25 -

Vieo(k, k') = /dsrjo(kr) V(r)jo(K'r) = (k|Vi—o|k’) = Vig matrix

@ Momentum units (% = ¢ = 1): typical relative momentum
in large nucleus ~ 1fm~" ~ 200 MeV but . . .

@ Repulsive core = large high-k (= 2fm~') components



Consequences of a repulsive core
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@ Probability at short separations suppressed — “correlations”

Short-distance structure < high-momentum components
Greatly complicates expansion of many-body wave functions



Many short wavelengths —> Large matrices

@ Harmonic oscillator basis with N.x shells for excitations

@ Graphs show convergence for soft chiral EFT potential
(although not at optimal A< for 6Li)

Ground State Energy [MeV]
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@ Factorial growth of basis with A = limits calculations
@ Problem: mismatch of scales/dof’s. Solution: use RG.



S. Weinberg on the Renormalization Group

@ From “Why the Renormalization Group is a good thing”

“The method in its most general form can | think be
understood as a way to arrange in various theories that the
degrees of freedom that you're talking about are the
relevant degrees of freedom for the problem at hand.”

@ Third Law of Progress in Theoretical Physics:
“You may use any degrees of freedom you like to describe a
physical system, but if you use the wrong ones, you’ll be sorry!”



S. Weinberg on the Renormalization Group

@ From “Why the Renormalization Group is a good thing”

“The method in its most general form can | think be
understood as a way to arrange in various theories that the
degrees of freedom that you're talking about are the
relevant degrees of freedom for the problem at hand.”

@ Third Law of Progress in Theoretical Physics:

“You may use any degrees of freedom you like to describe a
physical system, but if you use the wrong ones, you’ll be sorry!”

@ Improving perturbation theory in high-energy physics
e Mismatch of energy scales can generate large logarithms
@ Shift between couplings and loop integrals to reduce logs
@ Universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
o Like other RG applications, can seem like magic
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Low-pass filter on an image

@ Much less
information
needed

@ Long-wavelength
info is preserved

@ Could also lower
resolution by
“plock spinning”




Effect of low-pass filter on observables
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Why did our low-pass filter fail?

K (fm™)
2

@ Basic problem: low k and high k
are coupled (wrong dof’s!)

@ E.g., perturbation theory
for (tangent of) phase shift:

k|V|k’ (K'|V|k)

(k| V|k) + T ‘ ‘ —
(k|V|k) ; ~k®)m

60 1 -

@ Solution: Unitary transformation
of the H matrix = decouple!

— AVIS8

40 e
—— AVI8[k, =22fm"]

E, = (WplHV,)) UU=1 [
= (V| UNUHU'(U|W,))

— (WplH|W,)

phase shift (degrees)

@ Here: Decouple using RG 0




Two ways to decouple with RG equations

“Viewk” , Similarity RG

k

I n
AO
@ Lower a cutoff A; in k, K/, @ Drive the Hamiltonian toward
e.g., demand diagonal with “flow equation”
dT(k,k'; k?)/dN =0 [Wegner; Glazek/Wilson (1990’s)]

= Both tend toward universal low-momentum interactions!



Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /

d—;(k, K') o —(ek — e )P Va(k, K') + > (ex + e — 2eq) Va(k, q) Va(q, K')
q
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /

d—;(k, K') o —(ek — e )P Va(k, K') + > (ex + e — 2eq) Va(k, q) Va(q, K')
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /

d—;(k, K') o —(ek — e )P Va(k, K') + > (ex + e — 2eq) Va(k, q) Va(q, K')
q
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /
(kK)o —(e = e )PValk K) + (e + e = 2¢q) Va(k, @) Va (. K')
q

1

4
S, A=10.0fm
k (m™) 1
® 1 2 3 4 05
05
2 0
A .
<4
05
4
05




Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /
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q
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /
(kK)o —(e = e )PValk K) + (e + e = 2¢q) Va(k, @) Va (. K')
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

av
d—;(k, K') o —(ek — e )P Va(k, K') + > (ex + e — 2eq) Va(k, q) Va(q, K')
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

av.
d—):\(k, k') o< —(ex — ek )> Vi (k, k') + Z(ek + e — 2¢q) Va(k, ) VA (q, K')
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

av. ! / /
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

dV / / /
(kK)o —(e = e )PValk K) + (e + e = 2¢q) Va(k, @) Va (. K')
q
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dVy
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /
(kK)o —(e = e )PValk K) + (e + e = 2¢q) Va(k, @) Va (. K')
q
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV / / /
(kK)o —(e = e )PValk K) + (e + e = 2¢q) Va(k, @) Va (. K')
q
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Flow equations in action: NN only [arXiv:0912.3688]

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s
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Low-Pass Filters Work! [Jurgenson et al., (2008)]
@ Phase shifts with Vs(k, k') = 0 for k, k' > Knax
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Consequences of a Repulsive Core Revisited
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Probability at short separations suppressed = “correlations”

@ Greatly complicates expansion of many-body wave functions

@ Short-distance structure < high-momentum components



Consequences of a Repulsive Core Revisited
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@ Transformed potential = no short-range correlations in wf!
@ Potential is now non-local: V(r)y(r) — [a®r V(r, ¥ )y(r)
@ A problem for Green’s Function Monte Carlo approach
@ Not a problem for many-body methods using HO matrix elements



Many short wavelengths —> Large matrices

@ Harmonic oscillator basis with N,.x shells for excitations

@ Graphs show convergence for soft chiral EFT potential
and evolved SRG potentials (including NNN)
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@ Better convergence, but rapid growth of basis still a problem
— see talk by R. Roth



Basics: SRG flow equations [arxiv:0912.3688]

@ Transform an initial hamiltonian, H =T + V:
Hs = UsHUI = T + Vs ,
where s is the flow parameter. Differentiating wrt s:

d H S dUS

dS [7757 s] with Ns = TUT = _775 .

@ 1) is specified by the commutator with “generator” Gg:
ns = [Gs, H] ,
which yields the flow equation (T held fixed),

aH; d Vs
ds

= [[Gs 3]7 HS] :

@ G; determines flow =— many choices (T, Hp, Hgp, ...)



Flow in momentum basis with Gs = T

@ For A = 2, project on rel. momentum states |k), but generic

CL,VS = [[Tre1, V5], Hs] with  Tilk) = exlk) and X2 =1/y/s
dVy / 2 / /
o (oK) o —(ek = e )P Va(k k') + D ek + enr — 26q) Va(k, @) Va(q, K)

q
K2 (fm?) K2 (im?) K2 (m?) K2 (fm?)
Va=s.0(k, k') 1st term 2nd term Vi—25(k, k')

@ First term drives 'Sy V), toward diagonal:

Va(k, K') = Voo (K, k') e~ L(ek = e )/ NP



Flow in momentum basis with Gs =T

@ For NN only, project on rel. momentum states |k), but generic

CL,VS [[ T, Vs, Hs) with  Tilk) =lex) and X2 =1/y/s
dV)\ ' 2 / /
o (oK) o (e = e )P Va(k k') + D ek + enr — 26q) Va(k, @) Va(q, K)
q
K2 (fm?) K2 (fm?) K2 (m?) K2 (fm?)
Va—2s(k, k') 1st term 2nd term Va=z2.0(k, K')

@ First term drives 'Sy V), toward diagonal:

Va(k, K') = Voo (K, k') e~ L(ek = e )/ NP



Flow in momentum basis with Gs =T

@ For NN only, project on rel. momentum states |k), but generic

% = [[Tre1, V5], Hs] with  Tilk) =lex) and X2 =1/y/s
avy / 2 / /
o (oK) o (e = e )P Va(k k') + D ek + enr — 26q) Va(k, @) Va(q, K)

q
k? (fm?) K2 (fm 2) 2 'mz) k? (fm?)
Vi—2.0(k, k') 1st term 2nd term Va=15(k, K')

@ First term drives 'Sy V), toward diagonal:

Va(k, K') = Voo (K, k') e~ L(ek = e )/ NP



Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0 )

@ Yes! Use dHS = [[Gs, Hs], Hs] with Gs = < 0 QHsQ

381 kvnn:06 Lambda =2.0 lambda =12.0

351 kvnn:06 Lambda =2.0 lambda =12.0

K (fm™)
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Kk (fmT)

@ Best generators for nuclear applications?
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@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0 )

@ Yes! Use dHS = [[Gs, Hs], Hs] with Gs = < 0 QHsQ

381 kvnn:06 Lambda =2.0 lambda =10.0

381 kvnn:06 Lambda =2.0 lambda =10.0
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@ Best generators for nuclear applications?



Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0 )

@ Yes! Use dHS = [[Gs, Hs], Hs] with Gs = < 0 QHsQ
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@ Best generators for nuclear applications?



Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0
0 QHsQ

@ Yes! Use %% = [[Gs, Hs], Hs] with Gs = <
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@ Best generators for nuclear applications?
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Block Diagonalization Via SRG [G; = Hzp]

@ CanwegetaA =2fm~" W, «-like potential with SRG?

PHsP 0

® Yes! Use %% = [[Gs. Hsl, Hs] with GS=< 0 QHsQ
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Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0 )

st J— i ==
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Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0 )

st J— i ==
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Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

@ Yes! Use

dHs _
ds
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Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

| PHP 0
st J— ==
@ Yes! Use % = [[Gs, Hs], Hs] with Gs = 0 QH:sQ

351 kvnn:06 Lambda =2.0 lambda =2.0 351 kvnn:06 Lambda =2.0 lambda =2.0

K (fm™)
&© 05 1 1.5 2 25 3 35 05
04
05
03
! 02
15 04
0
2
01
25 02
03
3
04
35
05

@ Best generators for nuclear applications?

%5
oo
S
S
X
o
R
W

8!
55
=

R
X
R
R
X

ettt
SIS
SR
R
RS
R
S
SR
X

ot
55

Sk

!
S

k(fm™)
S
S
RIS
SRS

I
R

h
R




Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0

st J— i ==
@ Yes! Use % = [[Gs, Hs], Hs] with Gs = 0 QHsQ

5 —

351 kvnn:06 Lambda =2.0 lambda =1.5
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@ Best generators for nuclear applications?




Block Diagonalization Via SRG [G; = Hzp]

@ Canwe geta A =2fm~" Vi «-like potential with SRG?

PHsP 0

@ Yes! Use & — [[G;, Hs], Hs] with Gs = 0 QHsQ
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Flow of N3LO chiral EFT potentials

k2 (fm?)

@ 'Sy from N3LO (500 MeV) of Entem/Machleidt

k2 (fm®) k2 (fm?) k2 (fim?) k2 (fm?)

4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

0
A=20fm" A=15fm’

@ 'S, from N3LO (550/600 MeV) of Epelbaum et al.
k2 (fm?)

k2 (fm?) k2 (fm?) k2 (fim?) k2 (fm?)

004812048‘12048‘120481204812

A=15fm’

A=30fm’ A =20fm"

@ Significant decoupling even for “soft” EFT interaction
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Flow of N3LO chiral EFT potentials

@ 35, from N3LO (500 MeV) of Entem/Machleidt
k2 (fm®) k2 (fm?) k2 (fim?) k2 (fm?) k2 (fm?)
0 4 812 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

A =2.0fm" A=15fm’

@ 35, from N3LO (550/600 MeV) of Epelbaum et al.
k2 (fm?) k2 (fm?) k2 (fim?) k2 (fm?) k2 (fm?)
4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

.

A=30fm’ A =20fm" A=15fm’

@ Significant decoupling even for “soft” EFT interaction
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Filter by running to lower )\ via SRG — ~Universal

V,(kk) [fm]

Diagonal Vy(k, k) Off-Diagonal V(k,0)
LO e ey L A AARRS
-1 4 v
[ A=5.0fm /-/ B A
05 1 1 5 ]
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r 1 a 0 1
L ] < L ]
1 < L. : 1
U= 7 . > = o .
o — 550/600 [E/G/M] ] i Y —— 550/600 [E/G/M] ]
F --= 600/700 [E/G/M] ] L —.— 600/700 [E/G/M] ]
-15F <= 500 [E/M] . -5 4 -=- 500 [E/M] .
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@ Consistent with inverse scattering when S-matrices agree
@ Will evolved NNN interactions be universal?



Filter by running to lower )\ via SRG — ~Universal

Diagonal Vy(k, k) Off-Diagonal V(k,0)
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@ Consistent with inverse scattering when S-matrices agree
@ Will evolved NNN interactions be universal?



Filter by running to lower )\ via SRG — ~Universal

V,(kk) [fm]

Diagonal Vy(k, k) Off-Diagonal V(k,0)

LOprr 1.0 e ]
[ A=3.0fm / 1 - 1
051 : B 0.5 3
0.0 = oof g7 DS =
z | & z
-05F 4 = 05 4
[ 1 =) ]

L ] < ]
-10F y 4 > -1.0 ]
ES — 550/600 [E/G/M] ] —— 550/600 [E/G/M] ]
A .- 600/700 [E/GM] 1 / .= 600/700 [E/GM] 1
-1Lsp ) <= 500 [E/M] . R A -=- 500 [E/M] .
Fs --— 600 [E/M] : FL --— 600 [E/M] 1
—20f J 20 J

o e b b b b b o e b b b b L
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35

K [fm'] K [fm']

@ Consistent with inverse scattering when S-matrices agree
@ Will evolved NNN interactions be universal?
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V, (kk) [fm]

ilter by running to lower \ via SRG — ~Universal

Diagonal Vy(k, k) Off-Diagonal V(k,0)
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@ Consistent with inverse scattering when S-matrices agree
@ Will evolved NNN interactions be universal?



Filter by running to lower )\ via SRG — ~Universal

V, (kk) [fm]

Diagonal Vy(k, k) Off-Diagonal V(k,0)
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@ Consistent with inverse scattering when S-matrices agree
@ Will evolved NNN interactions be universal?



Filter by running to lower )\ via SRG — ~Universal

V, (kk) [fm]

Diagonal Vy(k, k) Off-Diagonal V(k,0)
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@ Consistent with inverse scattering when S-matrices agree
@ Will evolved NNN interactions be universal?



Lowering resolution increases “perturbativeness”
oo _ 1
Born Series: T(E)7V+VE V+VE HOVE—HOVJFW
@ For fixed E, find (complex) eigenvalues n(E) [Weinberg]

1
E — Hy
— T diverges if any |n,(E)| > 1 [Bogner et al. (2006)]

Imn Imn

VIR, =mIf) = T(E)IN) = VIL)( +nu + 0% +---)

< A=10fm’
A A=Tfm"
> A=5fm’

A=4fm
© A=3fm
B A=2fm
* N'LO




Lowering resolution increases “perturbativeness”

Born Series:

T(E) =

V+V

VALV

V+VE

E-Hy E-H

@ For fixed E, find (complex) eigenvalues n(E) [Weinberg]

1
o VI =it = TENN) = VIT)( o+
— T diverges if any |n,(E)| > 1 [Bogner et al. (2006)]
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Flow equations lead to many-body operators

@ Consider a's and a'’s wrt s.p. basis and reference state:

C;\gs = HZ a'a Za*a*aa} Za*a*aa] =---+> aalalaag+- -
Gs 2-body 2-body 3-body!

so there will be A-body forces (and operators) generated
@ Is this a problem?
e Ok if “induced” many-body forces are same size as natural ones
@ Nuclear 3-body forces already needed in unevolved potential
e In fact, there are A-body forces (operators) initially

o Natural hierarchy from chiral EFT
— stop flow equations before unnatural or tailor Gs to suppress

o Still needed: analytic bounds on A-body growth
@ SRG is a tractable method to evolve many-body operators

@ Alternative: choose a non-vacuum reference state
— in-medium SRG (e.g., HF reference state)



Observations on three-body forces

@ Three-body forces arise from +

eliminating/decoupling dof’s L] | . L
o excited states of nucleon
o relativistic effects
@ high-momentum rA=34 bin(‘iing‘ energ‘ies | 1
intermediate states "SRG NN only, & in fm™"

@ Omitting 3-body forces leads
to model dependence
@ observables depend on A/A

e cutoff dependence as tool

w
Jutry
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NLO NN potentials
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Observations on three-body forces

@ Three-body forces arise from + +
eliminating/decoupling dof’s - $ - ><W t X
o excited states of nucleon % % ‘ |

o relativistic effects

@ high-momentum
intermediate states

@ Omitting 3-body forces leads
to model dependence

@ observables depend on A/A
e cutoff dependence as tool

V. NN from N’LO (500 MeV)

low k
3NF fit t0 Eyyp and 1, Ay, =2.0 fm |

|
(%

3N

NN + 3N 4

-10

3rd order pp+hh

Energy/nucleon [MeV]
[
G

@ NNN at different A/A must be 20 P
fit or evolved to YEFT :222 E‘

@ NNN contribution is -25
important at low resolution

_ | | | | | |
(e.g., nuclear matter) 30— s = 4 U

e how large is 4-body? k, [fm ]




3D SRG evolution with 7. in a Jacobi HO basis

@ Evolve in any basis [E. Jurgenson, P. Navratil, rjf (2009)]
e Here: use anti-symmetric Jacobi HO basis from NCSM
o Directly obtain SRG matrix elements in HO basis

@ Separate 3-body evolution not needed

@ Compare 2-body only to full 2 + 3-body evolution:

Ground-State Energy [MeV]
%
(=}
T

N’LO (500 MeV) |

| ExptAﬂ ]

Ll
67 10 20

24

Ground-State Energy [MeV]

29l

N’LO (500 MeV)
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3D SRG evolution with 7. in a Jacobi HO basis

@ Evolve in any basis [E. Jurgenson, P. Navratil, rjf (2009)]
e Here: use anti-symmetric Jacobi HO basis from NCSM
o Directly obtain SRG matrix elements in HO basis
@ Separate 3-body evolution not needed

@ Compare 2-body only to full 2 + 3-body evolution:
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3D SRG evolution with 7. in a Jacobi HO basis

@ Evolve in any basis [E. Jurgenson, P. Navratil, rjf (2009)]
e Here: use anti-symmetric Jacobi HO basis from NCSM
o Directly obtain SRG matrix elements in HO basis
@ Separate 3-body evolution not needed

@ Compare 2-body only to full 2 + 3-body evolution:
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Tjon line revisited

I I I I I I
30 ---- Tjon line for NN-only potentials L
| e—e SRG NN-only O
2. — SRGNN+NNN(A>1.7fm™) .~ |
| )\,Zl.SE;]" |
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% 281 .
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Contributions to the ground-state energy

@ Look at ground-state matrix elements of KE, NN, 3N, 4N

40 = ‘ — 80—
] 4
o H ] 60 He
2 NN+NNN (0 STl ]
- s—a <VaN~ 40 NN+NNN
ho =28 <V.. >
10 N, =18 Vo> N =18 ho=28 " N

20

g.s. Expectation Value (MeV)
(=)

g.s. Expectation Value (MeV)
(==}

-10 . -20
-20 1 —-40
-30 . -60
—40 ] -80
_s50Ld | L1 Ll ] _100L | |
1 2 3 4 5 10 2 3 4 5 10

@ Clear hierarchy, but also strong cancellations at NN level
@ What about the A dependence? [See R. Roth talk]
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Overview: Low-energy nuclear physics

Lowering the resolution with RG

Survey of calculations at low resolution

Outlook



Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory




Ab Initio
1 full space

Many l

body
global properties

Configuration Interaction
l truncated space

Effective
interaction
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Monte Carlo

Observables
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Unstable “proton-dripping” fluorine-14

@ Ab initio calculation using low-k inverse-scattering potential
@ Theory preceded recent experimental measurement

P. Maris et al., PRC 81, 021301(R) (2010)

— V.Z. Goldberg et al., Phys. Lett. B 692,
307 (2010)
10- g
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I — —3 | 2
g . 7 |- THIHH ; 3)
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* el —2
H —e— —f A - .
e : == Ab-initio - experiment 1304p
e N
L N @ Matrix dimension 2 x 109,
I —
0 2 4 6 8 ExtrapolationB Exp. 2.5 hours on 30,000 cores



Ab initio approach to light-ion reactions

@ NCSM/RGM using low momentum SRG NN interactions

@ See, e.g., Navratil, Roth, Quaglioni, PRC 82, 034609 (2010) for
nucleon-nucleus scattering

S.Quaglioni and P. Navratil, PRL101, 092501 (2008); PRC79, 044606 (2009)
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a00f; E
350+ \‘ --- ENDF/B-VI| 3.0 Parity-inverted —
300l 08 T }S(R(l}-N;LO ] 25 g.s. of 1"Be 7
2250\ AT = g understood!
E > 15
= 200} = 10
5 150 R 08 . g
100 oo JVZ e F
sof 5 boh BT R —
~ o -1.0 2 Expt. NCSM/RGM NCSM

L
0 30 60 90 120 150 180
Oy [deg]

The n-*He differential cross section for 17 MeV neutrons (left) and "'Be bound
spectrum (right) obtained within the NCSM/RGM compared to experimental data



Ab initio approach to light-ion reactions

@ Applications to fusion energy systems and stellar evolution

Thermonuclear
reactions power
stars, ‘Be(p,y)*B
is the principal
source of
observed solar
neutrinos

4
d+t— n+ He

TBe(p.y)“B

S, leV b

thermonuclear
fusion

s
By, (MeV]

@ Sitill to do: including SRG-evolved NNN interactions



More perturbative —> like quantum chemistry
@ Powerful coupled cluster method works! (figure from G. Hagen)

Converged results for *°Ca and ®°Ni, using N3LO evolved down to A = 2.5fm ! from
similarity renormalization group theory.

S (MeV)

j"\

@ Improved convergence with low-resolution SRG potentials
but also with “bare” chiral EFT potentials [T. Pappenbrock]

@ CC extended to 3-body forces by Hagen et al.



In-medium SRG for nuclei [Tsukiyama, Bogner, Schwenk]

Pp —— ~hh=+——pp —— ~hh=~—pp ——

. . ~hh+—
(] SRG In A'bOdy SyStem US|ng ’00 1020 30 40 0 10 20 30 40 0 10 20 30 40
normal ordering "o

@ Decouple 1p1h, 2p2h, ...
sectors from (HF) reference
state; approximate N-body

[
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@ Promising results for closed-shell nuclei: “He, 60, 4°Ca
@ Energies between coupled cluster CCSD and CCSD(T)
@ Non-perturbative valence shell-model effective interactions



Finding the “driplines” — limits of existence!

Discovery of “°Mg and “?Al suggests neutron _
drip-line slant towards heavier isotopes
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@ Oxygen-24 is double magic —> Why is it at limit of stability?
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The oxygen anomaly not reproduced without 3N forces
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The oxygen anomaly - impact of 3N forces
include “normal-ordered” 2-body part of 3N forces (enhanced by core A)

leads to repulsive interactions between valence neutrons
can understand partly based on Pauli principle for 3N(A)

%0 core I:

—e0o—
dy, orbltal remains unbound from %0 to 280
0

~ R
> (c) Energles calculated (b) Energies calculated
) from Vigwi NN I from G-matrix NN 1
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first microscopic explanation of the oxygen anomaly
Otsuka, Suzuki, Holt, Schwenk, Akaishi (2010)



Low resolution —> MBPT is feasible!
@ MBPT = Many-Body Perturbation Theory

1501 15t order o]
|+ « + 2nd order pp ladder 7
— — 3rd order pp ladder 7
100+ Pl |
@ Compare high resolution I PPt
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o MBPT ConvergeS! E - Argonne v]si
< of .
@ R. Roth et al. = apply 2
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Low resolution — MBPT is feasible!

@ MBPT = Many-Body Perturbation Theory

@ Compare high resolution
to low resolution

@ MBPT converges!

@ R. Roth et al. = apply
to finite nuclei (4NF?)

@ Need 3-body force for
saturation (evolved or fit)
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One of the paths to microscopic nuclear DFT

@ Construct a chiral EFT to a given order (N3LO at present)
@ Evolve A down with RG (to A ~ 2fm™" for ordinary nuclei)
@ NN interactions fully, NNN interactions approximately
@ Generate density functional in MBPT
e Hartree-Fock plus “~ second order”, use “DME” in k-space

T 1T T T T 17 T T 1T T 1T T 17
V. NN from N’LO (500 MeV)
3NF fit to E3; and rypp,

Energy/nucleon [MeV]
Po—sd -+

r [ saturation 0 s g ]
[ Hartree-Fock point 2nd order T 3rd order pp+hh ]
ool L 11 T T
20 0.8 1.0 1.2 14 1.6 0.8 1.0 1.2 1.4 1.6 0.8 1.0 1.2 1.4 1.6

k, [fm ] K, [fm '] k, [fm ]

Bogner et al., (2009), Hebeler et al., (2010), Gebremariam et al., (2010)



Spontaneous fission: Energy surfaces from DFT
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Low resolution calculations of neutron matter
@ Evolve NN to low momentum, fit NNNto A= 3.4
@ Neutron matter in perturbation theory [Hebeler, Schwenk (2010)]
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@ Use cutoff dependence to estimate many-body uncertainty
@ Uncertainties from long-range NNN constants are greatest



Constraining neutron stars: r—9.7-13.9km for 1.4 M,

log,, P [dyne/cm?]
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Hebeler, Lattimer,
Pethick, Schwenk
(2010)

@ Extrapolate EOS

to higher density

@ Solve for Mvs. R

—> yellow band
constrains radius
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Summary: Atomic Nuclei at Low Resolution

@ Strategy: Lower the resolution and track dependence on it

@ High resolution = high momenta can be painful!
( “It hurts when | do this.” “Then don’t do that.”)

o Correlations in wave functions reduced dramatically
@ Non-local potentials and many-body operators “induced”
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@ Flow equations (SRG) achieve low resolution by decoupling
e Band (or block) diagonalizing Hamiltonian matrix (or ...)
e Unitary transformations: observables don’t change
but physics interpretation may change!
@ Nuclear case: evolve until few-body forces/operators
start to explode or use in-medium SRG



Summary: Atomic Nuclei at Low Resolution

@ Strategy: Lower the resolution and track dependence on it

@ High resolution = high momenta can be painful!
( “It hurts when | do this.” “Then don’t do that.”)

o Correlations in wave functions reduced dramatically
@ Non-local potentials and many-body operators “induced”

@ Flow equations (SRG) achieve low resolution by decoupling
e Band (or block) diagonalizing Hamiltonian matrix (or ...)

e Unitary transformations: observables don’t change
but physics interpretation may change!

@ Nuclear case: evolve until few-body forces/operators
start to explode or use in-medium SRG

@ Applications to nuclei and beyond
@ Cl, coupled cluster, HH, . ..converge faster =—- new possibilities
e Microscopic shell model = role of 3-body forces
e MBPT works = constructive nuclear density functional theory



Some open questions and issues

@ Power counting for evolved many-body interactions
o Need analytic estimates plus more numerical tests
@ Operator issues (SRG evolves operators, too!)
@ Scaling of many-body operators
e Technical issues (e.g., boosting)
e Factorization for many-body systems
@ Can different choices for Gs ...
e control the growth of many-body forces?
e improve convergence in HO basis?
e drive a non-local potential to local form?
@ Use of different basis for SRG evolution
o Need momentum-space implementation
e Hyperspherical coordinates? (also for visualization)

@ Do many-body interactions flow to universal form?
@ Can the SRG help with constructing/analyzing EFT’s?



Thanks: collaborators and others at low resolution
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LLNL: E. Jurgenson, N. Schunck

Los Alamos: J. Drut

Ohio State: E. Anderson, M. Bettencourt, W. Li, R. Perry,
K. Wendt

@ ORNL/UofT: M. Kortelainen, W. Nazarewicz, M. Stoitsov
@ TRIUMF: P. Navratil

@ UNEDF

@ Warsaw: S. Glazek



Flow equations and the SRG: History

@ In the early 1970’s, Ken Wilson and Franz Wegner
= critical phenomena and renormalization group (RG)
@ Twenty years later, Wilson and Wegner innovate again

e Unitary RG flow to make many-particle Hamiltonians
increasingly energy diagonal

o Glazek and Wilson, “Renormalization of Hamiltonians” (1993)
= SRG for QCD on the light front

o Wegner, “Flow Equations for Hamiltonians” (1994)
= condensed matter problems
@ S. Kehrein, “Flow-Equation Approach to Many-Particle Systems”
e Dissipative quantum systems to correlated electron physics
to non-equilibrium problems to ...
@ Particularly well suited for low-energy nuclear physics!
@ Only applied in last few years [arXiv:0912.3688]
e Technically simpler and more versatile than other methods



Novel generators: Gs; = f(T) [Shirley Li, OSU physics major]
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Factorization in few-body nuclei: n(k) at large k

@ AV14 NN with VMC

N(pYA (fm?)

o

@ Conventional explanation:
Dominance of NN potential and
short-range correlations

(Frankfurt et al.)

2 .3
p(fm )
From Pieper, Wiringa, and Pandharipande (1992).

@ Abosons in 1D model

Universal
p>>L
dependence

given by
laca

——A=2, 2-body only
-='A=3, 2-body only
- - -A=4, 2-body only i
* A=2, PHQ 2-body only, A=2
O A=3, PHQ 2-body only, A=2
x A=4, PHQ 2-body only, A=2 | |

4
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®
>
]

@ Alternative: factorization

IS LK) laoaKa (K YK (K)] a(K)

@ universal p dependence from Igoq

@ norm. factor from low-energy m.e.
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