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Extremes in low-energy nuclear physics

Extremes of nuclear existence: driplines, superheavies, . . .

Extremes in the heavens: supernovae, neutron stars, . . .

We want to extrapolate reliably with error estimates,
connect to and exploit known microscopic physics

Shakespeare’s Othello (Act 5, Scene 2)

I pray you, in your letters,
When you shall these unlucky deeds relate,
Speak of me as I am; nothing extenuate,
Nor set down aught in malice. Then must you speak
Of one that lov’d not wisely but too well;
Of one not easily jealous, but being wrought,
Perplex’d in the extreme . . .

To avoid being “perplex’d” =⇒ go to low resolution!



Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved

Use low-energy variables for low-energy processes
Short-distance structure can be replaced by something simpler
without distorting low-energy observables
Physics interpretation can change with resolution!

Could be a model or systematic (e.g., effective field theory)

Low density⇔ low interaction energy⇔ low resolution (?)
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Nuclei at very low resolution

If separation of scales is
sufficient, then EFT with
pointlike interactions is
efficient (e.g., kR � 1)
Universal properties (large as)

connect to cold atom physics
low-density neutron matter
e.g., Efimov physics

Pionless EFT
e.g., np → dγ with
Etyp ≈ 0.02–0.2 MeV

Halo EFT
Bvalence � Bcore,Eex

nα-system (Bedaque et al.) or
αα-system (Higa et al.) or . . .

Here: focus on systems where pion exchange is resolved



S-wave NN potential in momentum space

VL=0(k , k ′) =

∫
d3r j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (~ = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (> 2 fm−1) components
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Consequences of a repulsive core
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Probability at short separations suppressed =⇒ “correlations”

Short-distance structure⇔ high-momentum components

Greatly complicates expansion of many-body wave functions



Many short wavelengths =⇒ Large matrices

Harmonic oscillator basis with Nmax shells for excitations

Graphs show convergence for soft chiral EFT potential
(although not at optimal ~Ω for 6Li)
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Factorial growth of basis with A =⇒ limits calculations

Problem: mismatch of scales/dof’s. Solution: use RG.



S. Weinberg on the Renormalization Group
From “Why the Renormalization Group is a good thing”
“The method in its most general form can I think be
understood as a way to arrange in various theories that the
degrees of freedom that you’re talking about are the
relevant degrees of freedom for the problem at hand.”
Third Law of Progress in Theoretical Physics:
“You may use any degrees of freedom you like to describe a
physical system, but if you use the wrong ones, you’ll be sorry!”

Improving perturbation theory in high-energy physics
Mismatch of energy scales can generate large logarithms
Shift between couplings and loop integrals to reduce logs

Universality in critical phenomena
Filter out short-distance degrees of freedom

Simplifying calculations of nuclear structure/reactions
Make nuclear physics look more like quantum chemistry!
Like other RG applications, can seem like magic
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Low-pass filter on an image

Much less
information
needed

Long-wavelength
info is preserved

Could also lower
resolution by
“block spinning”



Effect of low-pass filter on observables
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Why did our low-pass filter fail?

Basic problem: low k and high k
are coupled (wrong dof’s!)

E.g., perturbation theory
for (tangent of) phase shift:

〈k |V |k〉+
∑
k ′

〈k |V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+ · · ·

Solution: Unitary transformation
of the H matrix =⇒ decouple!

En = 〈Ψn|H|Ψn〉 U†U = 1
= (〈Ψn|U†)UHU†(U|Ψn〉)
= 〈Ψ̃n|H̃|Ψ̃n〉

Here: Decouple using RG 0 100 200 300
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Two ways to decouple with RG equations

“Vlow k ”

Λ
0

Λ
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Λ
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k’

k

Lower a cutoff Λi in k , k ′,
e.g., demand
dT (k , k ′; k2)/dΛ = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

=⇒ Both tend toward universal low-momentum interactions!



Flow equations in action: NN only [arXiv:0912.3688]

In each partial wave with εk = ~2k2/M and λ2 = 1/
√

s

dVλ
dλ

(k , k ′) ∝ −(εk − εk ′)2Vλ(k , k ′) +
∑

q

(εk + εk ′ − 2εq)Vλ(k ,q)Vλ(q, k ′)
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Low-Pass Filters Work! [Jurgenson et al., (2008)]

Phase shifts with Vs(k , k ′) = 0 for k , k ′ > kmax
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Consequences of a Repulsive Core Revisited
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Probability at short separations suppressed =⇒ “correlations”

Greatly complicates expansion of many-body wave functions

Short-distance structure⇔ high-momentum components
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Transformed potential =⇒ no short-range correlations in wf!

Potential is now non-local: V (r)ψ(r) −→
∫

d3r′ V (r, r′)ψ(r′)
A problem for Green’s Function Monte Carlo approach
Not a problem for many-body methods using HO matrix elements



Many short wavelengths =⇒ Large matrices

Harmonic oscillator basis with Nmax shells for excitations

Graphs show convergence for soft chiral EFT potential
and evolved SRG potentials (including NNN)
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Better convergence, but rapid growth of basis still a problem
=⇒ see talk by R. Roth



Basics: SRG flow equations [arXiv:0912.3688]

Transform an initial hamiltonian, H = T + V :

Hs = UsHU†s ≡ T + Vs ,

where s is the flow parameter. Differentiating wrt s:

dHs

ds
= [ηs,Hs] with ηs ≡

dUs

ds
U†s = −η†s .

ηs is specified by the commutator with “generator” Gs:

ηs = [Gs,Hs] ,

which yields the flow equation (T held fixed),

dHs

ds
=

dVs

ds
= [[Gs,Hs],Hs] .

Gs determines flow =⇒ many choices (T , HD, HBD, . . . )



Flow in momentum basis with Gs = T
For A = 2, project on rel. momentum states |k〉, but generic

dVs

ds
= [[Trel,Vs],Hs] with Trel|k〉 = εk |k〉 and λ2 = 1/

√
s

dVλ
dλ

(k , k ′) ∝ −(εk − εk ′)2Vλ(k , k ′) +
∑

q

(εk + εk ′ − 2εq)Vλ(k ,q)Vλ(q, k ′)

Vλ=3.0(k , k ′) 1st term 2nd term Vλ=2.5(k , k ′)

First term drives 1S0 Vλ toward diagonal:

Vλ(k , k ′) = Vλ=∞(k , k ′) e−[(εk − εk ′)/λ2]2 + · · ·
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Block Diagonalization Via SRG [Gs = HBD]

Can we get a Λ = 2 fm−1 Vlow k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

(
PHsP 0

0 QHsQ

)

Best generators for nuclear applications?
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Flow of N3LO chiral EFT potentials

1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction



Flow of N3LO chiral EFT potentials

3S1 from N3LO (500 MeV) of Entem/Machleidt

3S1 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction



Filter by running to lower λ via SRG =⇒ ≈Universal
Diagonal Vλ(k , k)
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Lowering resolution increases “perturbativeness”
Born Series: T (E) = V + V

1
E − H0

V + V
1

E − H0
V

1
E − H0

V + · · ·

For fixed E , find (complex) eigenvalues ην(E) [Weinberg]

1
E − H0

V |Γν〉 = ην |Γν〉 =⇒ T (E)|Γν〉 = V |Γν〉(1 + ην + η2
ν + · · · )

=⇒ T diverges if any |ην(E)| ≥ 1 [Bogner et al. (2006)]
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Flow equations lead to many-body operators
Consider a’s and a†’s wrt s.p. basis and reference state:

dVs

ds
=
[[∑

a†a︸︷︷︸
Gs

,
∑

a†a†aa︸ ︷︷ ︸
2-body

]
,
∑

a†a†aa︸ ︷︷ ︸
2-body

]
= · · ·+

∑
a†a†a†aaa︸ ︷︷ ︸

3-body!

+ · · ·

so there will be A-body forces (and operators) generated
Is this a problem?

Ok if “induced” many-body forces are same size as natural ones

Nuclear 3-body forces already needed in unevolved potential
In fact, there are A-body forces (operators) initially
Natural hierarchy from chiral EFT
=⇒ stop flow equations before unnatural or tailor Gs to suppress
Still needed: analytic bounds on A-body growth

SRG is a tractable method to evolve many-body operators

Alternative: choose a non-vacuum reference state
=⇒ in-medium SRG (e.g., HF reference state)



Observations on three-body forces

Three-body forces arise from
eliminating/decoupling dof’s

excited states of nucleon
relativistic effects
high-momentum
intermediate states

Omitting 3-body forces leads
to model dependence

observables depend on Λ/λ

cutoff dependence as tool

NNN at different Λ/λ must be
fit or evolved to χEFT

NNN contribution is
important at low resolution
(e.g., nuclear matter)

how large is 4-body?

π, ρ, ω
∆, N∗
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3D SRG evolution with Trel in a Jacobi HO basis
Evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
Directly obtain SRG matrix elements in HO basis
Separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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Tjon line revisited
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Contributions to the ground-state energy

Look at ground-state matrix elements of KE, NN, 3N, 4N
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Clear hierarchy, but also strong cancellations at NN level

What about the A dependence? [See R. Roth talk]
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SciDAC UNEDF project

Universal Nuclear Energy
Density Functional

Collaboration of physicists,
applied mathematicians,
and computer scientists

US funding but international
collaborators also

See unedf.org for highlights!
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Unstable “proton-dripping” fluorine-14
Ab initio calculation using low-k inverse-scattering potential

Theory preceded recent experimental measurement

P. Maris et al., PRC 81, 021301(R) (2010)
V.Z. Goldberg et al., Phys. Lett. B 692,
307 (2010)

Matrix dimension 2× 109,
2.5 hours on 30,000 cores



Ab initio approach to light-ion reactions

NCSM/RGM using low momentum SRG NN interactions

See, e.g., Navrátil, Roth, Quaglioni, PRC 82, 034609 (2010) for
nucleon-nucleus scattering



Ab initio approach to light-ion reactions

Applications to fusion energy systems and stellar evolution

Still to do: including SRG-evolved NNN interactions



More perturbative =⇒ like quantum chemistry
Powerful coupled cluster method works! (figure from G. Hagen)

Improved convergence with low-resolution SRG potentials
but also with “bare” chiral EFT potentials [T. Pappenbrock]

CC extended to 3-body forces by Hagen et al.



In-medium SRG for nuclei [Tsukiyama, Bogner, Schwenk]

SRG in A-body system using
normal ordering

Decouple 1p1h, 2p2h, . . .
sectors from (HF) reference
state; approximate N-body

Promising results for closed-shell nuclei: 4He, 16O, 40Ca

Energies between coupled cluster CCSD and CCSD(T)

Non-perturbative valence shell-model effective interactions



Finding the “driplines” — limits of existence!

Oxygen-24 is double magic =⇒Why is it at limit of stability?







Low resolution =⇒ MBPT is feasible!

MBPT ≡ Many-Body Perturbation Theory

Compare high resolution
to low resolution

MBPT converges!

R. Roth et al. =⇒ apply
to finite nuclei (4NF?)

Need 3-body force for
saturation (evolved or fit)
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One of the paths to microscopic nuclear DFT

Construct a chiral EFT to a given order (N3LO at present)

Evolve Λ down with RG (to Λ ≈ 2 fm−1 for ordinary nuclei)
NN interactions fully, NNN interactions approximately

Generate density functional in MBPT
Hartree-Fock plus “≈ second order”, use “DME” in k -space
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Bogner et al., (2009), Hebeler et al., (2010), Gebremariam et al., (2010)



Spontaneous fission: Energy surfaces from DFT

A. Staszczak et al.,
PRC 80, 014309 (2009)



Low resolution calculations of neutron matter
Evolve NN to low momentum, fit NNN to A = 3,4
Neutron matter in perturbation theory [Hebeler, Schwenk (2010)]

Use cutoff dependence to estimate many-body uncertainty
Uncertainties from long-range NNN constants are greatest



Constraining neutron stars: R = 9.7–13.9 km for 1.4 Msun

Hebeler, Lattimer,
Pethick, Schwenk
(2010)

Extrapolate EOS
to higher density

Solve for M vs. R
=⇒ yellow band
constrains radius
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Summary: Atomic Nuclei at Low Resolution

Strategy: Lower the resolution and track dependence on it
High resolution =⇒ high momenta can be painful!

( “It hurts when I do this.” “Then don’t do that.”)
Correlations in wave functions reduced dramatically
Non-local potentials and many-body operators “induced”

Flow equations (SRG) achieve low resolution by decoupling
Band (or block) diagonalizing Hamiltonian matrix (or . . . )
Unitary transformations: observables don’t change
but physics interpretation may change!
Nuclear case: evolve until few-body forces/operators
start to explode or use in-medium SRG

Applications to nuclei and beyond
CI, coupled cluster, HH, . . . converge faster =⇒ new possibilities
Microscopic shell model =⇒ role of 3-body forces
MBPT works =⇒ constructive nuclear density functional theory
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Some open questions and issues
Power counting for evolved many-body interactions

Need analytic estimates plus more numerical tests

Operator issues (SRG evolves operators, too!)
Scaling of many-body operators
Technical issues (e.g., boosting)
Factorization for many-body systems

Can different choices for Gs . . .
control the growth of many-body forces?
improve convergence in HO basis?
drive a non-local potential to local form?

Use of different basis for SRG evolution
Need momentum-space implementation
Hyperspherical coordinates? (also for visualization)

Do many-body interactions flow to universal form?

Can the SRG help with constructing/analyzing EFT’s?
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Michigan State: S. Bogner, H. Hergert

LLNL: E. Jurgenson, N. Schunck

Los Alamos: J. Drut

Ohio State: E. Anderson, M. Bettencourt, W. Li, R. Perry,
K. Wendt

ORNL/UofT: M. Kortelainen, W. Nazarewicz, M. Stoitsov

TRIUMF: P. Navratil

UNEDF

Warsaw: S. Glazek



Flow equations and the SRG: History

In the early 1970’s, Ken Wilson and Franz Wegner
=⇒ critical phenomena and renormalization group (RG)

Twenty years later, Wilson and Wegner innovate again
Unitary RG flow to make many-particle Hamiltonians

increasingly energy diagonal
Glazek and Wilson, “Renormalization of Hamiltonians” (1993)

=⇒ SRG for QCD on the light front
Wegner, “Flow Equations for Hamiltonians” (1994)

=⇒ condensed matter problems

S. Kehrein, “Flow-Equation Approach to Many-Particle Systems”
Dissipative quantum systems to correlated electron physics

to non-equilibrium problems to . . .

Particularly well suited for low-energy nuclear physics!
Only applied in last few years [arXiv:0912.3688]
Technically simpler and more versatile than other methods



Novel generators: Gs = f (T ) [Shirley Li, OSU physics major]

Gs = T

Gs = −Λ2/(1 + T/Λ2) ≈ c + T + · · ·

Gs = −Λ2e−T/Λ2
≈ c + T + · · ·

For Λ = 2 fm−1, low E part
of V still decoupled

Much less evolution at high E
=⇒ much faster!

Allows evolution to low λ

Application to A > 2 evolution

Other useful generators?



Factorization in few-body nuclei: n(k) at large k

AV14 NN with VMC

From Pieper, Wiringa, and Pandharipande (1992).

Conventional explanation:
Dominance of NN potential and
short-range correlations
(Frankfurt et al.)

A bosons in 1D model
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A=2, 2−body only
A=3, 2−body only
A=4, 2−body only
A=2, PHQ 2−body only, λ=2
A=3, PHQ 2−body only, λ=2
A=4, PHQ 2−body only, λ=2

  Universal 
     p>>λ
dependence
   given by 
      I

QOQ

Alternative: factorization∫ λ
0

∫ λ
0 ψ†λ(k ′) [IQOQKλ(k ′)Kλ(k)]ψλ(k)

universal p dependence from IQOQ

norm. factor from low-energy m.e.
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