OPEN-CHARM SESSION

F.K.A. heavy-light+electroweak

Today's agenda

Sorry, no work reports today

• unless any ad-hoc contributions?

Overall status of open-charm activities

- physics goals?
- who is doing what?
- missing analysis items?
- Looking ahead

OPEN-CHARM WITH PANDA: "OPPORTUNITIES WITH CHALLENGES"

- Key physics items for PANDA?
 - fierce competition from BESIII, Belle2, LHCb, ..
 - interaction with TAG

• **Open-charm production in p-pbar?**

- predicted cross sections vary from *nano* to *micro* barns
- interesting physics in production mechanisms?

• Open-charm with p-pbar far from trivial

- *huge* background to cope with cross section: up to ~50 mbarn
- requires "complete" detector and over-redundancy

0.1

Khodjamirian,Klein,Mannel,Wang - arXiv:1111.3798 (baryon-meson couplings (light-cone sum rule) input to quark-gluon string model)

IDENTIFIED TOPICS

- Open-charm production in p pbar
- D_(s) Spectroscopy: exotics, transitions & decays
- $\Lambda_c / \Sigma_c / \Xi_c$ Spectroscopy: [see above]
- Form Factors: (semi-)leptonic decays
- Electroweak: (in)direct CPV, rare decays

OPEN-CHARM PRODUCTION

Groningen, Juelich, ...

Alexandros Apostolou, Andreas Herten, Solmaz Vejdani, ...

Only cuts on kinematics: 4C kin.fit, mass window on opposite Kpi pair

Inclusive:
$$p\bar{p} \to D^0 D^0 \to (K\pi) + X$$

Only cuts on kinematics: 1C kin.fit, mass window on tagged Kpi pair

Figure Of Merit

Alexandros Apostolou, J.M. (KVI-CART)

D(S) SPECTROSCOPY (EXOTICS, TRANSITIONS, STRONG DECAYS, ...)

Giessen, Juelich, ... Andreas Herten, Andreas Pitka, Elisabetta Prencipe, ...

PANDA OPPORTUNITIES IN D/D_s SPECTROSCOPY

Mass and width determination

- models give large variations in width: 5-200 keV for $D_{s0}*(2317)$
- many upper limits for D_(s) states

PANDA OPPORTUNITIES IN D/D_s SPECTROSCOPY

Mass and width determination

- models give large variations in width: 5-200 keV for $D_{s0}*(2317)$
- many upper limits for D_(s) states

D_s SPECTROSCOPY WITH PANDA

Challenges in D_s meson spectroscopy

• $\overline{pp} \rightarrow D_s^- D_{sJ}$ D ■ Missing mass of D_ζ⁻: 3 states included in this simulation: $D_s(2317)$, $D_s(2460)$ and $D_s(2535)$ D_(2535) improve mass resolution and efficiency Missing M َةٍ 100 TRUTH MATCHED VALUES D_{s1} reconstructed exclusively E.P. ⁵_μ ₁₄₀ p_γ>50 MeV/c (2460) to evaluate the width 120 D_c(2317 Bkg cross section > thousand times 100 than expected on signal ⁸⁰ Work in progress • Expected ~ $(10^3 - 10^5) \cdot \varepsilon$ events/day 60 high res. mode 40 D_{s0}^{*} (2317)⁺ simulation Fit to Sig. events 20 Entries 375 Sig+comb bkg Mean 2.317 2.4 2.3 2.5 2.6 2.7 2.8 RMS 0.01624 Ds- missing mass [GeV/c²] 00 χ^2 / ndf 28.97 / 28 Work in progress Goals: Constant 370.5 ± 7.4 2.31775 ± 0.00067 Mean 400 0.01604 ± 0.00018 Sigma 1. Cross section measurement in pp $\varepsilon = 35\%$ (unknown, difficult predictions: 1-100 nb) 300 2. Measurement of the width with mass scan 200 and the excitation function of cross section 3. Mixing between D states with same spin, e.g. $D_{s_1}(2460)$ and $D_{s_1}(2535)$ 2.25 2.3 2.2 2.35 2.4 2.45 2.5 4. Chiral symmetry breaking, involving very precise DS- missing mass: DS(2317)+ [GeV/c²] mass measurement: $D_{s_0}(2317)$ and $D_{s_1}(2460)$ can be interpreted as chiral partners of the same heavy-light system 20 E. Prencipe **ICNPF 2014**

PANDA OPPORTUNITIES IN D/D SPECTROSCOPY

Radiative transitions

- limited data available
- model sensitive and calculable as well!

Soft pion transitions

- isospin breaking mechanism in D_s
- low-energy with Goldstone bosons
- mixing of 1+ states: f.e, $D_{sI}(2460, 2536) \rightarrow D*pi$

Search for D-waves and "exotics"

- expect higher production rate in p-pbar than in e+e-
- determine spin-parity of existing candidates
- Many opportunities for *yout to join the efforts! *new* discovery from LHCb: $D_{s1}^*(2860)$ mixture with $D_{s3}^*(2860)$ - arXiv:1407.7574

Light quark spectroscopy

- study light (strange) meson spectrum in hadron decays (PWA)
- ideal $J^{P}=0^{-}$ beacons

CHARM BARYON SPECTROSCOPY

Groningen, Juelich, ... You??... (strong overlap with Baryon working group)

CHARM BARYON SPECTROSCOPY PANDA OPPORTUNITIES

Strong decays of charm baryons

- soft pion transitions —> HHChPT
- direct determination of pion couplings:
- g_1 - g_2 (s to s-wave) and h_2 - h_{18} (p to s-wave)
- requires measurements of partial widths

Electromagnetic decays of charm baryons

- test role of heavy quark and chiral symmetry (HHChPT)
- f.e. g_1 determination via $\Gamma(\Xi_c^{\prime*0} \rightarrow \Xi_c^0 \gamma)$
- exp. challenging, BF are expected to be tiny

Molecular states & heavy baryons?

 many predictions of molecular states from coupled-channels models

FORM FACTORS/DECAY CONSTANTS: (SEMI)LEPTONIC DECAYS

Juelich, Mainz, Muenster, ... Lu Cao, ...

 $G_F^2 \langle V_{cs(d)} \rangle$ $P^3_{K(\pi)}$, $\frac{C(D \to K(\pi) ev)}{da^2} =$

D_s SEMI-LEPTONIC DECAY

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

D_s semi-leptonic decay

Lu Cao (FZ7), June Collaboration meeting

~22% efficiency

~3.7% efficiency (=80 evts/month)

D/D_S LEPTONIC DECAYS

Interest from Muenster group (Jochen Heitger, Alfons Khoukaz)

Model	$f_{D_s^+}(\text{MeV})$	$f_{D^+}({ m MeV})$	$f_{D_{s}^{+}}/f_{D^{+}}$
Experiment (our averages)	257.5 ± 4.6	204.6 ± 5.0	1.258 ± 0.038
Lattice (HPQCD) [22]	$246.0 \pm 0.7 \pm 3.5$	$208.3 \pm 1.0 \pm 3.3$	$1.187 \pm 0.004 \pm 0.012$
Lattice (FNAL+MILC) $[23]$	$246.4 \pm 0.5 \pm 3.6$	$209.2 \pm 3.0 \pm 3.6$	1.175 ± 0.019
PQL [24]	244 ± 8	197 ± 9	1.24 ± 0.03
QCD sum rules [25]	205 ± 22	177 ± 21	$1.16 \pm 0.01 \pm 0.03$
QCD sum rules [26]	$245.3 \pm 15.7 \pm 4.5$	$206.2 \pm 7.3 \pm 5.1$	$1.193 \pm 0.025 \pm 0.007$
QCD sum rules [27]	246 ± 6	204 ± 6	1.21 ± 0.04
QCD sum rules [28] (I)	241 ± 12	208 ± 11	1.16 ± 0.07
QCD sum rules [28] (II)	258 ± 13	211 ± 14	1.22 ± 0.08
QCD sum rules [29]	238^{+13}_{-23}	201^{+12}_{-13}	$1.15\substack{+0.04\\-0.05}$
Field correlators [30]	260 ± 10	210 ± 10	1.24 ± 0.03
Light front [31]	268.3 ± 19.1	206 (fixed)	1.30 ± 0.04

PANDA:

Detailed simulations urgently needed!

FLAG2013

 $|V_{cd}|$

 $|V_{cs}|$

(IN) DIRECT CPV/RARE DECAYS

Mainz, GSI... Donghee Kang, ...

FEASIBILITY STUDY RARE DECAYS $D^0 \rightarrow \gamma \gamma / \mu^+ \mu^-$

Donghee Kang (Mainz), June Collabora

Branching fraction of rare decay $D^0 \rightarrow \gamma \gamma$

FSIM: DPM background reduction possible up till a level of ~10⁻⁹

FEASIBILITY STUDY RARE DECAYS $D^0 \rightarrow \gamma \gamma / \mu^+ \mu^-$ Donghee Kang (Mainz), June Collaboration meeting IELMHOLTZ **GEMEINSCHAF1** JOHANNES GUTENBERG UNIVERSITÄT MAINZ

$$D^{0} \rightarrow \gamma \gamma \text{ signal data} \qquad D^{0} \rightarrow \pi^{0} \pi^{0} \text{ background data}$$

$$N_{D \rightarrow \gamma \gamma} = 2 \text{ fb}^{-1} \times 100 \text{ nb} \times \Sigma(Br_{i}) \times \varepsilon_{tag} \times 2$$

$$= 8.4 \text{ events}$$

$$Br(D^{0} \rightarrow \gamma \gamma) < 2.2 \times 10^{-6}$$

$$Br(\overline{D}^{0} \rightarrow K^{+} \pi^{-}) = 0.0389$$

$$\varepsilon_{tag} = \varepsilon_{D^{0} \rightarrow \gamma \gamma \& \overline{D}^{0} \rightarrow K^{+} \pi^{-}} = 0.246$$

$$D^{0} \rightarrow \pi^{0} \pi^{0} \text{ background data}$$

$$N_{D \rightarrow \pi^{0} \pi^{0}} = 2 \text{ fb}^{-1} \times 100 \text{ nb} \times \Sigma(Br_{i}) \times \varepsilon_{tag} \times 2$$

$$= 70 \text{ events}$$

$$Br(D^{0} \rightarrow \pi^{0} \pi^{0}) = 8.4 \times 10^{-4} [\text{BABAR}(2012)]$$

$$Br(\overline{D}^{0} \rightarrow K^{+} \pi^{-}) = 0.0389$$

$$\varepsilon_{tag} = \varepsilon_{D^{0} \rightarrow \gamma \gamma \& \overline{D}^{0} \rightarrow K^{+} \pi^{-}} = 0.246$$

On the edge of feasibility! (let's hope the cross section is larger than 100 nb)

OTHER ELECTROWEAK OPPORTUNITIES?

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

$$\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi)$$

NP searches via mixing/decays?

- (in)direct CPV studies
- CPV "excitement" in charm from LHCb

Additional FCNC transitions:

- forbidden at tree level, possibly sensitive to NP
- dominated by long-distance effect
- Many opportunities for *yout to join the efforts! f.e. $D_0 \rightarrow \pi/\rho + \ell^+ \ell^-$ (SM ~10⁻⁶, PDG <10⁻⁴-10⁻⁵), q² distributions could help!
- Weak decays from charm baryons?
 - Λ_c, Ξ_c maybe higher production rate?

- We are making progress!
 - Many tools in simulation framework have become available (thanks to the nice developments by software group)
 - Results are becoming more-and-more conclusive

• But there are bottlenecks and to-dos...

- figure-of-merits not always available (for good reasons)
- Open charm analyses are complex and require a detailed understanding and improvement of the underlying software and algorithms
- request for analysis memos: better start right-away!
- manpower remains limited, although many open physics channels to study
- communication with TAG: room for improvement!

Looking forward to this week's workshop

- Sinead Ryan: "Open-charm meson sector"
- Antimo Palano: "Open-charm, an experimental overview"
- Alexei Pivovarov: "Electroweak physics"

