OPEN-CHARM SESSION

F.K.A. heavy-light+electroweak

Today's agenda

- Sorry, no work reports today
- unless any ad-hoc contributions?
- Overall status of open-charm activities
- physics goals?
- who is doing what?
- missing analysis items?
- Looking ahead

OPEN-CHARM WITH PANDA: "OPPORTUNITIES WITH CHALLENGES"

- Key physics items for PANDA?
- fierce competition from BESIII, Belle2, LHCb, ..
- interaction with TAG
- Open-charm production in p-pbar?
- predicted cross sections vary from nano to micro barns
- interesting physics in production mechanisms?
- Open-charm with p-pbar far from trivial
- *huge* background to cope with cross section: up to $\sim 50 \mathrm{mbarn}$
- requires "complete" detector and over-redundancy

OPEN-CHARM WITH PANDA: "OPPORTUNITIES WITH CHALLENGES"

- Non-resonant production

Goritschnig,Kroll,Pire,Schweiger - EPJA42, 43 (2009), arXiv:1311.1607 (double handbag approach: pQCD motivated)

Khodjamirian,Klein,Mannel,Wang - arXiv:1111.3798 (baryon-meson couplings (light-cone sum rule) input to quark-gluon string model)

OPEN-CHARM WITH PANDA: "OPPORTUNITIES WITH CHALLENGES"

- Resonant production

BESIII, arXiv:1403.6011
(Giessen group)

$$
\sigma(s)=\left|A_{c o n}+A_{\psi} e^{i \phi}\right|^{2}
$$

$$
=\left|\sqrt{\sigma_{c o n}(s)}+\sqrt{\sigma_{\psi}} \frac{m_{\psi} \Gamma_{\psi}}{s-m_{\psi}^{2}+i m_{\psi} \Gamma_{\psi}} e^{i \phi}\right|^{2}
$$

$$
\begin{gathered}
\text { "detailed balance" } \\
p \bar{p} \rightarrow \Psi(3770) \\
\sigma<17.2 \mathrm{nb} \\
\text { or } \\
\sigma=425 \pm 43 \mathrm{nb} \\
\text { ????? }
\end{gathered}
$$

IDENTIFIED TOPICS

- Open-charm production in p pbar
- $\mathrm{D}_{(\mathrm{s})}$ Spectroscopy: exotics, transitions \& decays
- $\Lambda_{c} / \Sigma_{c} / \Xi_{c}$ Spectroscopy: [see above]
- Form Factors: (semi-)leptonic decays
- Electroweak: (in)direct CPV, rare decays

OPEN-CHARM PRODUCTION

Groningen, Juelich, ...
Alexandros Apostolou, Andreas Herten, Solmaz Vejdani, ...

Exclusive: $p \bar{p} \rightarrow D^{0} \bar{D}^{0} \rightarrow\left(K^{-} \pi^{+}\right)\left(K^{+} \pi^{-}\right) \quad$ Alexandros Apostolou, $7 . M$. (KVI-CART)

Only cuts on kinematics: 4C kin.fit, mass window on opposite Kpi pair

Only cuts on kinematics: 1C kin.fit, mass window on tagged Kpi pair

Figure Of Merit

$D_{(s)}$ SPECTROSCOPY

(EXOTICS, TRANSITIONS, STRONG DECAYS, ...)
Giessen, Juelich, ...
Andreas Herten, Andreas Pitka, Elisabetta Prencipe, ...

PANDA OPPORTUNITIES IN D/D S SPECTROSCOPY

- Mass and width determination
- models give large variations in width: 5-200 keV for $\mathrm{D}_{\mathrm{s} 0} *(2317)$
- many upper limits for $\mathrm{D}_{(\mathrm{s})}$ states
$\mathrm{D}_{\mathrm{so}}{ }^{*}$ (2317) Energy Scan

$$
\mathrm{D}_{\mathrm{s} 0}^{*}(2317) \text { world average (PDG) }
$$

- Mass: $2317.8 \pm 0.6 \mathrm{MeV} / \mathrm{C}^{2}$
- Width: < $3.8 \mathrm{MeV} / \mathrm{c}^{2}$

$$
\bar{p} p \rightarrow D_{s}^{ \pm} D_{s 0}^{*}(2317)^{\mp} \quad \begin{gathered}
\text { inclusive reconstruction } \\
n+\text { missing mass }
\end{gathered} \quad \begin{gathered}
\text { Simulated } \\
\text { sum mass spectrum }
\end{gathered}
$$

$$
D_{s}^{ \pm} \rightarrow \phi \pi^{ \pm}, \quad \phi \rightarrow K^{+} K^{-}
$$

$$
D_{s 0}^{*}(2317)^{\mp} \rightarrow D_{s}^{\mp} \pi^{0}
$$

Marius Mertens (FZJ)

Excitation function
4287.0
4287.5 V S MeV

PANDA OPPORTUNITIES IN D/D SPECTROSCOPY

- Mass and width determination
- models give large variations in width: 5-200 keV for $\mathrm{D}_{\mathrm{s} 0} *(2317)$
- many upper limits for $\mathrm{D}_{(\mathrm{s})}$ states

Elisabetta Prencipe (FZJ)
$60 \cdot 9000 \mathrm{nb}^{-1}, 5 \mathrm{nb}$ at 5 MeV above threshold,

Ds SPECTROSCOPY WITH PANDA

Challenges in D_{s} meson spectroscopy ${ }^{J}$ JüLICH

a Goals:

1. Cross section measurement in $\bar{p} p$ (unknown, difficult predictions: 1-100 nb)
2. Measurement of the width with mass scan and the excitation function of cross section
3. Mixing between D states with same spin, e.g. $D_{\mathrm{S} 1}(2460)$ and $\mathrm{D}_{\mathrm{S} 1}(2535)$

- Missing mass of $\mathrm{D}_{\mathrm{s}}^{-}$: improve mass resolution and efficiency
- $D_{\text {SJ }}$ reconstructed exclusively to evaluate the width
- Bkg cross section > thousand times than expected on signal
- Expected $\sim\left(10^{3}-10^{5}\right) \cdot \varepsilon$ events/day high res. mode

4. Chiral symmetry breaking, involving very precise mass measurement: $\mathrm{D}_{\mathrm{s} 0}(2317)$ and $\mathrm{D}_{\mathrm{s} 1}(2460)$ can be interpreted as chiral partners of the same heavy-light system

PANDA OPPORTUNITIES IN D/D ${ }_{s}$ SPECTROSCOPY

- Radiative transitions
- limited data available
- model sensitive and calculable as well!
- Soft pion transitions
- isospin breaking mechanism in D_{s}
- low-energy with Goldstone bosons
- mixing of $1+$ states: fee, $\mathrm{D}_{\mathrm{s}(}(2460,2536) — \mathrm{D}^{*}$ pi
- Search for D-waves and "exotics"
- expect higher production rate in p-pbar than in e+e-
- determine spin-parity of existing candidates
- *new* discovery from LHCb: D* ${ }_{11}$ (2860) mixture with $\mathrm{D}_{\mathrm{s} 3}(2860)$ - arXiv:1407.7574
- Light quark spectroscopy
- study light (strange) meson spectrum in hadron decays (PWA)

CHARM BARYON SPECTROSCOPY

Groningen, Juelich, ...

You??...
(strong overlap with Baryon working group)

CHARM BARYON SPECTROSCOPY PANDA OPPORTUNITIES

- Strong decays of charm baryons
- soft pion transitions — HHChPT
- direct determination of pion couplings:
- $g_{1}-g_{2}$ (s to s-wave) and $h_{2}-h_{18}$ (p to s -wave)
- requires measurements of partial widths
- Electromagnetic decays of charm baryons
- test role of heavy quark and chiral symmetry (HHChPT)
- f.e. g_{l} determination via $\Gamma\left(\Xi_{c}^{\prime * 0} \rightarrow \Xi_{c}^{0} \gamma\right)$
- exp. challenging, BF are expected to be tiny
- Molecular states \& heavy baryons? - many predictions of molecular states from coupled-channels models

FORM FACTORS/DECAY CONSTANTS: (SEMI)LEPTONIC DECAYS

Juelich, Mainz, Muenster, ...
Lu Cao, ...

$$
\frac{d \Gamma(D \rightarrow K(\pi) e v)}{d q^{2}}=\frac{\left.G_{F}^{2,} \mid V_{c s(d)}\right) d^{2} P_{K(\pi)}^{3}}{24 \pi^{3}}\left|\begin{array}{l}
1, \cdots \\
q_{+}\left(q^{2}\right),
\end{array}\right|^{2}
$$

Ds SEMI-LEPTONIC DECAY Lu Cao (FZ7)

- Semileptonic decays Ds-> e + v + η, η ' are an excellent environment for precision measurements of the CKM matrix elements $\left|\mathrm{V}_{\mathrm{cd}}\right|$ and $\left|\mathrm{V}_{\mathrm{cs}}\right|$.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q^{2}.
- The investigation opens a new approach

D_{s} SEMI-LEPTONIC DECAY Lu Cao (FZ7), June Collaboration meeting

~22\% efficiency

~3.7\% efficiency (=80 evts/month)

D/Ds LEPTONIC DECAYS

Interest from Muenster group (Jochen Heitger, Alfons Khoukaz)

Model	$f_{D_{s}^{+}}(\mathrm{MeV})$	$f_{D^{+}}(\mathrm{MeV})$	$f_{D_{s}^{+}} / f_{D^{+}}$
Experiment (our averages)	257.5 ± 4.6	204.6 ± 5.0	1.258 ± 0.038
Lattice (HPQCD) [22]	$246.0 \pm 0.7 \pm 3.5$	$208.3 \pm 1.0 \pm 3.3$	$1.187 \pm 0.004 \pm 0.012$
Lattice (FNAL+MILC) [23]	$246.4 \pm 0.5 \pm 3.6$	$209.2 \pm 3.0 \pm 3.6$	1.175 ± 0.019
PQL [24]	244 ± 8	197 ± 9	1.24 ± 0.03
QCD sum rules [25]	205 ± 22	177 ± 21	$1.16 \pm 0.01 \pm 0.03$
QCD sum rules [26]	$245.3 \pm 15.7 \pm 4.5$	$206.2 \pm 7.3 \pm 5.1$	$1.193 \pm 0.025 \pm 0.007$
QCD sum rules [27]	246 ± 6	204 ± 6	1.21 ± 0.04
QCD sum rules [28] (I)	241 ± 12	208 ± 11	1.16 ± 0.07
QCD sum rules [28] (II)	258 ± 13	211 ± 14	1.22 ± 0.08
QCD sum rules [29]	238_{-23}^{+13}	201_{-13}^{+12}	$1.15_{-0.05}^{+0.04}$
Field correlators [30]	260 ± 10	210 ± 10	1.24 ± 0.03
Light front [31]	268.3 ± 19.1	206 (fixed)	1.30 ± 0.04

PANDA:

Detailed simulations

 urgently needed!
(IN)DIRECT CPV/RARE DECAYS

Mainz, GSI...
Donghee Kang, ...

FEASIBILITY STUDY RARE DECAYS
 $D^{0} \rightarrow \gamma \gamma / \mu^{+} \mu^{-}$

Donghee Kang (Mainz), Fune Collaboration meeting

Branching fraction of rare decay $D^{0} \rightarrow \gamma \gamma$

Short distance contribution

$$
B r_{D^{0} \rightarrow \gamma \gamma}^{S D}=3 \times 10^{-11}
$$

[PhysRev D66 014009 (2002)]

Long distance contribution

New Physics

$\mathrm{c} \rightarrow \mathrm{u} \gamma$ transition can be enhanced by NP, e.g. some NP models can allow at sizeable levels

$$
\begin{aligned}
& c \rightarrow \longrightarrow^{\tilde{u}_{i}} \\
& \tilde{g}, \chi_{l}^{0} \\
& B r_{D^{0} \rightarrow \gamma_{V}}^{M S S M}=6 \times 10^{-6} \\
& \text { [Phys.Lett.B500 304-312 (2001)] } \\
& B r_{D^{0} \rightarrow \gamma \gamma}^{S M, H Q \chi P T}=(1.0 \pm 0.5) \times 10^{-8} \\
& \text { [PhysRev D64 } 074008 \text { (2001)] }
\end{aligned}
$$

FEASIBILITY STUDY RARE DECAYS $D^{0} \rightarrow \gamma \gamma / \mu^{+} \mu^{-}$

Donghee Kang (Mainz), Fune Collaboration meeting

FSIM: DPM background reduction possible up till a level of $\sim 10^{-9}$

FEASIBILITY STUDY RARE DECAYS
 $$
D^{0} \rightarrow \gamma \gamma / \mu^{+} \mu^{-}
$$

Donghee Kang (Mainz), June Collaboration meeting

$$
\begin{aligned}
& D^{0} \rightarrow \gamma \gamma \text { signal data } \quad D^{0} \rightarrow \pi^{0} \pi^{0} \text { background data } \\
& \begin{aligned}
N_{D \rightarrow \gamma} & =2 \mathrm{fb}^{-1} \times 100 \mathrm{nb} \times \Sigma\left(B r_{i}\right) \times \varepsilon_{t a g} \times 2 \quad N_{D \rightarrow \pi^{0} \pi^{0}}=2 \mathrm{fb}^{-1} \times 100 \mathrm{nb} \times \Sigma\left(B r_{i}\right) \times \varepsilon_{t a g} \times 2 \\
=8.4 \text { events } & =70 \text { events }
\end{aligned} \\
& \operatorname{Br}\left(D^{0} \rightarrow \gamma \gamma\right)<2.2 \times 10^{-6} \\
& \operatorname{Br}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=0.0389 \\
& \varepsilon_{\text {tag }}=\varepsilon_{D^{0} \rightarrow r k \bar{D}^{0} \rightarrow K^{+} \pi^{-}}=0.246 \\
& \operatorname{Br}\left(D^{0} \rightarrow \pi^{0} \pi^{0}\right)=8.4 \times 10^{-4}[\operatorname{BABAR}(2012)] \\
& \operatorname{Br}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)=0.0389 \\
& \varepsilon_{\text {tag }}=\varepsilon_{D^{0} \rightarrow \pi^{0} \pi^{0} \& D^{0} \rightarrow K^{+} \pi^{-}}=0.005359
\end{aligned}
$$

On the edge of feasibility!

(let's hope the cross section is larger than 100 nb)

OTHER ELECTROWEAK OPPORTUNITIES?

$$
A_{C P}(f)=\frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow f\right)}
$$

- NP searches via mixing/decays?
- (in)direct CPV studies
- CPV "excitement" in charm from LHCb
- Additional FCCNC transitions:

- forbidden at tree level, possibly sensitive to NP
- dominated by long-distance effect
- f.e. $D_{0} \rightarrow \pi / \rho+\ell^{+} \ell^{-}\left(\mathrm{SM} \sim 10^{-6}, \mathrm{PDG}<10^{-4}-10^{-5}\right)$, q^{2} distributions could help!
- Weak decays from charm baryons?
- Λ_{c}, Ξ_{c}
- maybe higher production rate?
- We are making progress!
- Many tools in simulation framework have become available (thanks to the nice developments by software group)
- Results are becoming more-and-more conclusive
- But there are bottlenecks and to-dos...
- figure-of-merits not always available (for good reasons)

AND LOOK AHEAD

- Open charm analyses are complex and require a detailed understanding and improvement of the underlying software and algorithms
- request for analysis memos: better start right-away!
- manpower remains limited, although many open physics channels to study
- communication with TAG: room for improvement!
- Looking forward to this week's workshop
- Sinead Ryan: "Open-charm meson sector"
- Antimo Palano: "Open-charm, an experimental overview"
- Alexei Pivovarov: "Electroweak physics"

