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1-Slide Summary

Symmetry Energy for Finite Nuclei & for Uniform Matter
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Energy in Uniform Matter
E
A

(ρn, ρp) =
E0

A
(ρ) + S(ρ)

(ρn − ρp

ρ

)2
+O(. . .4)

symmetric matter (a)symmetry energy ρ = ρn + ρp

E0

A
(ρ) = −aV +

K
18

(ρ− ρ0

ρ0

)2
+ . . . S(ρ) = −aV

a +
L
3
ρ− ρ0

ρ0
+ . . .

Known: aa ≈ 16 MeV K ∼ 235 MeV Unknown: aV
a ? L ?
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Nuclear Masses
Mass formula

E = Enucl + ECoul = E0 + E1 + Emic + ECoul

Bulk contribution to the energy of a symmetric nucleus:

E0(A) = −aV A + aS A2/3 + . . .

Symmetry energy:

E1(N,Z ) = aa(A)
(N − Z )2

A
= 4aa(A)

T 2
z

A

Isospin invariance (charge invariance):

E1 = 4aa
T 2

z
A

−→ 4aa
TTT 2

A
= 4aa

TTT 2
⊥ + T 2

z
A

= 4aa
T (T + 1)

A

e.g. Jänecke et al., NPA728(03)23
?? aa(A) from states that differ in T within one nucleus
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Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T :

E(A,T ,Tz) = E0(A) + 4aa(A)
T (T + 1)

A
+ Emic + ECoul

In the ground state T takes on the lowest possible value
T = |Tz | = |N − Z |/2. Through ’+1’ most of the Wigner term absorbed.

?Lowest state of a given T : isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

T=0

T=1

Tz=-1 Tz=1Tz=0

Study of changes in the
symmetry term possible
nucleus by nucleus

E∗IAS = ∆E = aa
∆
[
T (T + 1)

]
A

+ ∆Emic
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Peek into IAS Analysis
IAS data: Antony et al. ADNDT66(97)1
Shell corrections: Koura et al. ProTheoPhys113(05)305

Excitation energies to IAS, E∗IAS, for different A, lumped together
in narrow regions of A. Is E1 ∝ T (T + 1)? YES
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aa(A) without Shell Corrections

aa(A) =
A
4

E∗IAS
∆T 2

IAS data: Antony et al.
ADNDT66(97)1

Lines: fits to aa(A) assuming volume-surface competition
analogous to that for E1. ??Fundamental knowledge??
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aa(A) with Shell Corrections

aa(A) =
A
4

E∗IAS −∆Emic

∆T 2

Emic from: Koura et al.
ProTheoPhys113(05)305

Heavy nuclei aa ∼ 22 MeV, light aa ∼ 10 MeV
Symmetry Energy Danielewicz & Lee
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Z -Dependence of Symmetry Coefficients?

Symmetry coefficients on a nucleus-by-nucleus basis
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Sensitivity to Shell Corrections

Fit to raw data (A > 30) in the middle, but:
Moller et al. fit: aV

a = 39.73 MeV, aS
a = 8.48 MeV

von Groote et al.: aV
a = 31.74 MeV, aS

a = 11.27 MeV
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aa(A) from Skyrme-Hatree-Fock Calculations

We employ codes
by P.-G. Reinhard,
assuming spherical
symmetry

Similar behavior
with A as for IAS
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aa(A) from Different Skyrmes

Less impact of
the slope L at ρ0
than expected

??Difficulty for
L determination??
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Test of Large-A Expansion
Symbols: results of spherical no-Coulomb SHF calcs
⇒ Lines: volume-surface decomposition - expectation vs fit

→Symmetric
matter
energy
f/sample
Skyrmes
∼Works

→Symmetry
coefficient
∼ Not. . .

Expectations from half-∞ matter.
Symmetry Energy Danielewicz & Lee
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Can S(ρ) Be Constrained??!
Pearson
correlation
coefficient

rXY =
〈(X − 〈X 〉)(Y − 〈Y 〉)〉√
〈(X − 〈X 〉)2〉〈(Y − 〈Y 〉)2〉

|r | ∼ 1 - strong correlation
r ∼ 0 - no correlation

X ≡ aa(A)
Y ≡ S(ρ)

Ensemble of Skyrmes

Nearly no information about S(ρ0)!
Symmetry Energy Danielewicz & Lee
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Constraints on Symmetry Energy S(ρ)

Demand that Skyrme approximates IAS results at A > 30
produces a constraint area for S(ρ):

Symmetry Energy Danielewicz & Lee
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Conclusions

Symmetry-energy term weakens as nuclear mass number
decreases: from aa ∼ 23 Mev to aa ∼ 9 MeV for A . 8.

For A & 25, aa(A) may be fitted with
a−1

a = (aV
a )−1 + (aS

a )−1 A−1/3, where aV
a ≈ 35 MeV and

aS
a ≈ 10 MeV.

Weakening of the symmetry term can be tied to the
weakening of S(ρ) in uniform matter, with the fall of ρ.

In spite of difficulties, significant, ±(1-2) MeV, constraints
on S(ρ) at densities ρ =(0.05-0.13) fm−3.

Forthcoming: charge radii, skins, S(ρ ∼ ρ0) ,.
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n & p in Nucleus Skyrme-Hartree-Fock

Symmetry Energy in the Binding Formula
Bethe-Weizsäcker formula:

E = −aV A + aS A2/3 + aC
Z 2

A1/3 +aa(A)
(N − Z )2

A
+Emic

In the standard formula aa(A) ≡ aV
a ' 21 MeV, the symmetry

term has purely volume character.
A-dependent symmetry coefficient?? Capacitor analogy:

Nuclear: E = −av A + as A2/3 +
aa

A
(N − Z )2

= E0(A) +
aa

A
(N − Z )2

Electrostatic: E = E0 +
Q2

2C
⇒


Q ≡ N − Z

C ≡ A
2aa

Note: For coupled capacitors, capacitances add up.
Contributions to C with different A-dependence??
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n & p in Nucleus Skyrme-Hartree-Fock

A-Dependence of Symmetry Coefficient
E.g. volume-surface breakdown of energy & asymmetry:

E = ES + EV N − Z = (NS − ZS) + (NV − ZV )

EV = aV A + aV
a

(NV − ZV )2

A
ES = aS A2/3 + aS

a
(NS − ZS)2

A2/3

under charge symmetry, i.e. N ↔ Z invariance.
Minimization of the energy E with respect to (N − Z ) partition
between volume and surface yields:

E = E0 + Ea = E0 +
(N − Z )2

A
aV

a
+ A2/3

aS
a

Capacitance for asymmetry:

2C ≡ A
aa(A)

=
A
aV

a
+

A2/3

aS
a

volume capacitance surface

E.g. droplet model
different radii for n&p
Myers&Swiatecki
AnnPhys55(69)395

Symmetry Energy Danielewicz & Lee
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n & p in Nucleus Skyrme-Hartree-Fock

More on the Analogy

Asymmetry chemical potential
(∝ difference of n & p separation energies)

µa =
∂E

∂(N − Z )
=

1
2
(
µn − µp

)
=

2aa(A)

A
(N − Z )

Analogy: Voltage

V =
∂E
∂Q

=
1
C

Q ⇒ C ↔ A
2aa

Connected capacitors end up at the same voltage;
charge distributes itself in proportion to capacitance.

Symmetry Energy Danielewicz & Lee
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n & p in Nucleus Skyrme-Hartree-Fock

Invariant Densities
Net density ρ(r) = ρn(r) + ρp(r) is isoscalar⇒ weakly depends
on (N − Z ) for given A. [Coulomb suppressed. . . ]

ρnp(r) = ρn(r)− ρp(r) isovector but A ρnp(r)/(N − Z ) isoscalar!
A/(N − Z ) normalizing factor global. . . Similar local normalizing
factor, in terms of intense quantities, 2aV

a /µa, where aV
a ≡ S(ρ0)

Asymmetric density (formfactor for isovector density) defined:

ρa(r) =
2aV

a
µa

[ρn(r)− ρp(r)]

Normal matter: ρa = ρ0. Both ρ(r) & ρa(r) weakly depend on η!

In any nucleus:
ρn,p(r) =

1
2
[
ρ(r)± µa

2aV
a
ρa(r)

]
where ρ(r) & ρa(r) have universal features! (subject to shell effects)
No shell-effects, ρ’s as dynamic vbles: Hohenberg-Kohn functional

Symmetry Energy Danielewicz & Lee
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n & p in Nucleus Skyrme-Hartree-Fock

Asymmetric Density

ρn,p(r) =
1
2
[
ρ(r)± µa

2aV
a
ρa(r)

]
Net density ρ usually parameterized w/Fermi function

ρ(r) =
ρ0

1 + exp
( r−R

d

) with R = r0 A1/3

Asymmetric density ρa?? Related to aa(A) & to S(ρ)!

2C ≡ A
aa(A)

=
2(N − Z )

µa
= 2

∫
dr
ρnp

µa
=

1
aV

a

∫
dr ρa(r)

In uniform matter

µa =
∂E

∂(N − Z )
=
∂[S(ρ) ρ2

np/ρ]

∂ρnp
=

2 S(ρ)

ρ
ρnp

⇒ ρa=
2aV

a
µa

ρnp =
aV

a ρ

S(ρ)

n&p densities carry record of S(ρ)! =⇒ Hartree-Fock study of surface
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n & p in Nucleus Skyrme-Hartree-Fock

Comparisons to SHF
Issues in data-theory comparisons (codes by P.-G. Reinhard):
1. No isospin invariance in SHF - impossible to follow the
procedure for data
2. Shell corrections not feasible at such scrutiny as for data
3. Coulomb effects.

Solution: Procedure
that yields the same
results as the energy,
in the bulk limit, but is
weakly affected by shell
effects:

(N − Z )r<rc

N − Z
=

Cr<rc

C

=
aa

A aV
a

∫
r<rc

ρ

S(ρ)
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