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Preface
“Open Sesame”, 

“Ali baba and the forty thieves”
One Thousand and One Nights

http://en.wikipedia.org/wiki/One_Thousand_and_One_Nights
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Preface
“Open Sesame”, 

“Ali baba and the forty thieves”
One Thousand and One Nights

Who open the door for ultrahigh intense laser into an 
overdense plasma? 

http://en.wikipedia.org/wiki/One_Thousand_and_One_Nights
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Classical EM wave propagation
Maxwell’s Equations
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Classical EM wave propagation

Dispersion relation
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6Relativistic induced transparency

Single particle’s 8-like motion for a ≥ 1
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T. C. Pesch and H. –J. Kull, Phys. Plasmas 14, 083103 (2007).
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Dimensionless laser amplitude a:
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Relativistic induced transparency

If |v| ~ c,
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Relativistic critical density

the Lorentz factor averaged from the single particle‘s 
8-like motion

P. Mulser and D. Bauer, “HighPowerLaser-Matter Interaction”, (to be published by Springer).
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Particle-in-Cell (PIC) simulation
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9Determination of critical density
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10Determination of critical density
Laser and plasma parameters
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Cycle-averaged propagation appears very 
regular, and laser is mainly reflected at the 
critical surface as that in nonrelativistic 
regime
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11Critical density VS laser intensity
A very smoothed critical density can be achieved after being 
averaged over 10 cycles.

for 10,  
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12Critical density VS laser intensity
A very smoothed critical density can be achieved after being 
averaged over 10 cycles.

2 1/2/ [1 (1 ) / 2] ,  (  reflectivi ty).cr c Rn n R aγ= = + +

In a normally incident and linearly polarized laser pulse, 
relativistic critical density increase is in a good agreement 
with the averaged value from the single particle’s 8-like 
motion



13Effect of plasma density profile

For a very steep and highly overdense plasma.
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14Effect of laser polarization

for 5,  0a θ= =

For circular polarization, a density ridge prevents the laser from 
further propagation and restricts the critical density increase
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15Effect of laser polarization

For normal incident, the relativistic critical density increase 
can be well fitted by
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16Critical density VS incident angle
The highest critical density coincides with the lowest 
reflectivity in the case of 30o incidence.

for 2,  a =

2 1/ 2conflicts with / [1 (1 ) / 2] .cr cn n R aγ= = + +



17Critical density VS incident angle
The highest critical density coincides with the lowest 
reflectivity in the case of 30o incidence.

for a

This phenomenon is due 
to the formation of semi-
black density cavity and 
resonance.

ofor 2,  30a θ= =
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Relativistic laser beam propagation (LP)

Sakagami and Mima attributed the inhibition of the propagation 
velocity to the oscillation of the ponderomotive force and hence 
the oscillation of electron density at the laser front.
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H. Sakagami, K. Mima, Phys. Rev. E 54, 1870 (1996).



19Relativistic laser beam propagation (CP)

Inhibition of propagation velocity is not attributed to the 
oscillation of ponderomotive force.
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CP pulse propagates even 
more slowly than LP pulse.

Ponderomotive force for circular polarized laser
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Relativistic laser beam propagation 

Laser field penetrates into an overdense plasma
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Relativistic induced transparency is guided by the skin 
penetration.

Propagation velocity depends on both the group 
velocity and the efficiency of skin penetration.
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Relativistic propagation velocity
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Relativistic propagation velocity
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Application (a): Fast ignition

The configuration of fast ignition 

J. J. Honrubia et al, Nucl. Fusion 46, L25 (2006)

ne about 105nc

Relativistic induced transparency, together with cone-
guiding, channeling and hole boring may make the deeper 
penetration into an overdense target possible, and make 
the fast ignition easier.



24
Application (b): Relativistic plasma shutter

A relativistic plasma shutter can remove the pre-pulse 
and produce a clean ultrahigh intensity pulse

This shutter is overdense but 
relativistic underdense.

S. A. Reed et al., Appl. Phys. Lett. 94, 201117 (2009).



25Application (c): Shortening of laser pulses

A quasi-single-cycle relativistic pulse can be produced 
by ultrahigh laser-foil interaction

L. L. Ji et al., Phys. Rev. Lett. 103, 215005 (2009).

Initial thin overdense foil evolves into
a thick but rare plasma, which is 
relativistically transparent.
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Conclusion
Relativistic induced transpancy make the penetration of a laser 
pulse into a overdense plasma possible.

For normal incident linearly polarized pulse, the critical density 
increase approximately follows the theory from a single particle
orbit.

Due to the formation of a density ridge before the laser front, the 
critical density increase is much lower than predicted for a 
circular polarized pulse.

Relativistic induced transparency is guided by the skin 
penetration; and the propagation velocity depends upon both the 
group velocity and the efficiency of skin penetration.

Relativistic induced transparency could find wide applications in 
fast ignition scheme, relativistic plasma shutter, and shortening of 
laser pulses.

Open Sesame!
Open, skin penetration!
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