

EMMI: Cosmic Matter in the Laboratory **Plasma Physics** *with* **Intense Laser** *and* **Heavy Ion Beams** <u>3rd Workshop: Moscow, May 20-21, 2010</u>

Heavy Ion and Laser Heating in resolution of Uranium Critical Point Location Problem

Igor Iosilevskiy

Joint Institute for High Temperature (Russian Academy of Science) Moscow Institute of Physics and Technology (State University)

Support: RAS Scientific Program "Physics of Extreme State of Matter" MIPT Research-Education Center "Physics of Extreme State of Matter"

Historical comments

Boris Sharkov, Meeting in ITEPh, 1997; EMMI-Workshop, 20 May, 2010;

- Brilliant perspectives with HIB energy deposition, $\Delta E \sim 100$ kJ/g. . . but now: $\Delta E \sim 1$ kJ/g
 - ? What could we do with $\Delta E \sim 1 \text{ kJ/g}$ and $t_{\text{HIB}} \sim 100 \text{ ns}$?

Igor Iosilevskiy, Meeting in ITEP, 1997

Igor Iosilevskiy, Meeting at HIF, 2002

Igor Iosilevskiy, Meeting in GSI, 2007

Igor Iosilevskiy, Meeting in GSI, 2009

? ? ? Meeting in GSI, 20..??

? - What could we do with $\Delta E \sim 1 \text{ kJ/g}$ and $t_{\text{HIB}} \sim 100 \text{ ns}$?

Study of thermophysical properties for WDM

- What to study
- How to arrange HIB energy deposition
- How to arrange measurements

HIB for thermophysical investigations

What to study

- How to arrange HIB energy deposition
- How to arrange measurements

Basic point

- Careful choice of investigated substance and physical problem

<u>Criteria</u>

- great uncertainty
- great applied importance
- fundamental physics

? - What substance - ? What property - ? What parameters - ?

Low energy deposition – what could we study via HIB?

Two outstanding goals

Uranium Critical Point Location Problem

- applied importance
- phenomenology
- fundamental physical problem

Non-congruent Phase Transitions in High Energy Density Matter

(uranium-bearing fuels (UO₂, UC, UN ...) and other mixed substances)

- applied importance
- phenomenology
- fundamental physical problem

«Extreme State of Matter»

Int. Conference "Equation of State" <u>Russia, Elbrus, 1990-2010</u> Int. Conference "Khariton's Science Readings" <u>Russian Federal Nuclear Center, Sarov, 2005-2010</u> Int. Conference "Zababakhin's Science Readings"

Russian Federal Nuclear Center, Snezhinsk, 2005 - 2010

Uranium Critical Point Location Problem

- Applied importance
- Phenomenology
- Fundamental physical problem

In cooperation with: Victor Gryaznov (*IPCP RAS*) and Artem Ukrainets & Katya Romadinova (*MIPT*)

Uranium Critical Point Location Problem Uncertainty

Recommendations of IVTAN-Database (1982)

	T	1	
Cr	9620	968	0.023
Мо	11150	546	0.0365
W	13400	337	0.043
v	12500	1078	0.027
Nb	19040	1252	0.030
Ta	20570	13500	0.036
Ti	11790	763	0.037
Zr	16250	752	0.051
Hf	18270	938	0.046
Sc	8350	408	0.048
Y	10800	374	0.068
La	11060	335	0.078
Th	14950	438	0.072
U	11630	611	0.045
UD2	25.0	2 4	0 6 6
		122.0	
UF ₆	504.5	4.59	0.255
UF ₆ Pu	504.5 10000	4.59 324.2	0.255 0.081
UF ₆ Pu PuO ₂	504.5 10000 7620	4.59 324.2 101	0.255 0.081 0.202
UF ₆ Pu PuO ₂ Li	504.5 10000 7620 3680	4.59 324.2 101 60	0.255 0.081 0.202 0.055
UF ₆ Pu PuO₂ Li Na	504.5 10000 7620 3680 2503	4.59 324.2 101 60 25.64	0.255 0.081 0.202 0.055 0.111
UF ₆ Pu PuO ₂ Li Na NaCl	504.5 10000 7620 3680 2503 3400	4.59 324.2 101 60 25.64 35	0.255 0.081 0.202 0.055 0.111 0.266
UF ₆ Pu PuO ₂ Li Na NaCl K	504.5 10000 7620 3680 2503 3400 2280	4.59 324.2 101 60 25.64 35 15.8	0.255 0.081 0.202 0.055 0.111 0.266 0.202
UF ₆ Pu PuO ₂ Li Na NaCl K K KCl	504.5 10000 7620 3680 2503 3400 2280 3200	4.59 324.2 101 60 25.64 35 15.8 22	0.255 0.081 0.202 0.055 0.111 0.266 0.202 0.415
UF ₆ Pu PuO ₂ Li Na NaCl K KCl Rb	504.5 10000 7620 3680 2503 3400 2280 3200 2106	4.59 324.2 101 60 25.64 35 15.8 22 13.22	0.255 0.081 0.202 0.055 0.111 0.266 0.202 0.415 0.246

Critical Point Parameters

Discussion: I. Iosilevskiy & V. Gryaznov, Journ. of Nuclear Materials, 344 (2005)

Critical Point Parameters *Recommendations of IPCP RAS-GSI Database*

	Pressure	Temperatue	Density	Entropy	
	P _C , kbar	Т _С , К	Q _C , g∕ñm³	S _C , J/g/K	
Be	2.87	8877	0.398	13.18	
Mg	2.46	3957	0.553	3.789	
Na	0.47	2473	0.240	3.281	
Zr	9.88	14860	1.634	1.693	
Hf	11.74	15810	3.610	0.885	
V	9.19	9915	1.631	2.718	
Nb	11.06	19180	1.701	2.023	
Ta	9.93	13530	4.263	0.923	
Cr	9.91	7797	2.660	2.332	
Mo	7.59	10180	3.690	1.520	
W	11.80	15750	4.854	0.837	
Fe	11.31	8787	2.183	2.496	
Со	5.55	9157	1.890	2.458	
Ni	10.42	7547	2.092	2.518	
Zn	3.28	3079	2.381	1.468	
Cd	0.87	2510	2.283	0.840	
Ag	10.64	7053	3.279	1.118	
Au	6.14	8515	6.061	0.624	
Re	15.91	18710	6.024	0.824	
Ir	13.40	16220	6.061	0.780	
Pt	6.21	11430	5.236	0.807	
Sn	2.39	8175	1.592	1.123	
Bi(VI)	2.25	4869	2.937	.529	
U	7.70	9637	4.505	0.727 -	

After D. Varentsov FAIR-Russia School Moscow, 2009

Uranium Critical Point Location

fifty years old problem

						List of Uranium
7 _C ≈ 12′000 K	(t	he early estim	ation)		<u>Braut</u> (1957)	CP parameters
7 _с [К]	$p_{\rm c}$, bar	$\rho_{\rm c} g/{\rm cm}^3$	Z _c	$ ho_{\rm s}/ ho_{\rm c}(^*)$	References	estimations
6′618	4160	4.12	0.437	4.60	Young D. (1977)	
7′533	798	1.03	0.295	18.4	Gates D. et al. (1960)	
6′200–7′663	- 7	-	-	-	Goldstein R.(1989) Hess H.(1995)	
8′317–9′112	-	-		-	Guldberg C. (1890).	
8′730	2360	5.17	0.150	3.67	Martynyuk M. (1989).	
9'000 (z _c = 3)	5000	2.60	0.6	7.42	Likalter A. (1997)	Table from:
9'400 (z _c = 3)	6000	2.59	0.706	7.32	Likalter A. (1985 - 1996)	H. Hess,
11′630	6110	5.30	0.284	3.58	Fortov V. et al. (1975)	Z. Metallkd. (2001)
11′679–12′995	-	-	-	-	Kopp I. (1967) Lang G. (1977)	Vapor Pressure and Critical Data for
12′400	4800	3.55	0.312	5.34	Morris E. (1964)	Uranium
12′434	4950	3.78	0.302	5.02	Gathers-Shaner-Young (1974)	
12′500	-	-	-	-	Grosse A. (1961)	
13′034	5136	4.03	0.280	4.71	Hornung K. (1975)	
13′043	8′487	5.17	0.361	3.66	Young D. & Alder B. (1971)	
9′636	7'700	4,50	Wide-rang	e EOS	Bushman - Lomonosov	
7′000	1'712	3,30 E	Extrapolation of	Liquid $\rho(T)$	Apfelbaum – Vorob'ev (2009)	
5′500– 6′500	100 – 1′000	(estimation –	thermal EO	S calibrati	on)) Iosilevskiy (1990)	Additions IL
6′840 12′800	4′440 8′450	(Plasma moo (Plasma moo	del – therma del – caloric	l calibratio calibration	n) Iosilevskiy & Gryaznov SAHA-code, JNM, (2005)	

Uncertainty in high-temperature caloric phase diagram

Uncertainty in Uranium Critical Pressure

The Problem:

Experimental data:

<u>Semi-empirical rules</u>:

Liquid density $\rho(T) - (T < 5 \text{ kK})$ Liquid enthalpy H(T) - (T < 5 kK)Vapor pressure $P_s(T) - (T < 5 \text{ kK})$ Convexity of liquid density $\rho_L(T)$ Quasi-linear vapor pressure $\ln P_s(T^{-1})$ Universal evaporation enthalpy $\Delta H(T)$

Incompatible

Dilemma:

Access semi-empirical rules and Deny experimental data

Access experimental data and Violate semi-empirical rules

Hypothetical resolution ?

Discussion: I. Iosilevskiy (Elbrus-1990) // I. Iosilevskiy & V. Gryaznov, Journal of Nuclear Materials, 344 (2005)

In Search of Resolution for Uranium Critical Point Location Problem

 \Leftrightarrow

? Wrong experiment

High temperature wrong extrapolation ?

liquid density $\rho(T)$ - ? liquid enthalpy H(T) - ? vapor pressure $P_s(T)$ - ?

unbelievable

We have enough reason to expect Violation of semi-empirical rule(s) Hypothetical violation of semi-empirical rule(s)

Lost of convexity for $\rho_L(T)$?

? What physical reason can approve this violation **?**

Iosilevskiy I, Hyland G., Ronchi C., Yakub E. "An Advanced Equation of State of UO2 up to the Critical Point" - Trans. Amer. Nucl. Soc. 81 122 (1999)// - Int. Journ. Thermophys. 22, 1253 (2001)// Contrib. Plasma Phys. 43, (2003)

What physical reason can approve the lost of convexity for $\rho(T)$ two-phase boundary in uranium ?

Drastic <u>change</u> of <u>effective ion-ionic interaction</u> during thermal expansion of liquid uranium and decrease of electronic degeneracy

Drastic *change* of *phase behavior* of evaporating uranium (p-T diagram)

Uranium Critical Point Location Problem

Hypothetical resolution - I

Discussion:

I. Iosilevskiy & Int. Conference: Subsecond Thermophysics, Moscow, 2008// FAIR-Russia School, Moscow, 2009

Hypothetical resolution of uranium critical point location problem

? ρ -*T* phase boundary consists of **TWO** fragments ?

Hypothetical resolution of uranium critical point location problem

? <u>ρ-T phase boundary consists of **TWO** fragments</u>?

More exotic and hypothetical

Hypothetical resolution - II

Transition from the "high-density phase" to the "low-density phase" must not be continuous

Additional phase transition ?

Discussion: Landau & Zel'dovich (1944) // Norman & Starostin (1970) //....

Additional phase transition ?

Very exotic but not fantastic !

Only 1 – 2 kJ/g is needed

Fundamental Physical Problem

Phase transition in a system *with* **varying mean-particle interaction**

Non-congruent evaporation in UO₂ \Leftrightarrow <u>the same physical problem</u>

Phase transition in the system with varying composition

Phase transition in the system

with varying mean-particle interaction !

Fundamental Physical Problem

What could we do?

- Study via simplified analytical plasma models

One-component plasma model on *<u>uniformly-compressible</u>* compensating background {OCP(~)}

- Study via direct numerical simulation

FT-DFT_MD // Monte-Carlo //

- Experimental study:

Exploding wires, *etc*

Heavy Ion Beam

Surface Laser Heating

HIB for thermophysical investigations

How to arrange HIB energy deposition

Priorities

- Uniformity of heated material
- Thermodynamic equilibrium

– How to arrange measurements

Priorities

- Direct measurement of thermodynamic parameters
 <u>without</u> intermediate <u>hydrodynamic re-calculations</u>
- Energy deposition control

HIB heating of highly dispersive materials -

very promising for thermophysical investigations (*)

* Iosilevskiy I. // Int. Conf. Intense Ion Beam Interaction with Ionized Matter // Moscow, ITEP Publishing (1999)

* Iosilevskiy I., Gryaznov V. // XIV Int. Conf. Heavy Ion & Inertial Fusion // Moscow, ITEP Publishing (2002)

How to arrange HIB energy deposition

HIB heating of highly dispersive porous materials -

very promising for thermophysical investigations (*)

Advantages:

- uniform quasi-free equilibrium expansion of each grain
- no fast hydrodynamic movement
- surface thermodynamic parameters are equal to the bulk ones
- porosity (ρ_{00}/ρ_0) is well-controlled parameter

* Iosilevskiy I. // Int. Conf. Intense Ion Beam Interaction with Ionized Matter // Moscow, ITEP Publishing (1999)

* Iosilevskiy I., Gryaznov V. // XIV Int. Conf. Heavy Ion & Inertial Fusion // Moscow, ITEP Publishing (2002)

Moment "X"

* * * * * * * * * * * * * * Basic idea

<u>**Critical event**</u> – Exhausting of free volume for grain's thermal expansion

In this moment we obtain:

- Uniform and homogeneous state of investigated material
- Known density (due to porosity and initial density control)

!! It means :

- End of free quasi-isobaric expansion
- Fast increasing of bulk pressure
- Start of stressed quasi-isochoric expansion

Pressure Jump

Moment "X"

* * * * * * * * * * *

Pressure Jump

If we catch this moment

- and if we know:
- temperature (surface)
- energy deposition (beam control)
- density (porosity control)

!! We obtain:

- Density of expanded liquid $\rho(T)_{liquid}$ (or $\rho(H)_{liquid}$)
- Thermal (or caloric) expansion coefficient

 $\alpha_P = (\partial \rho / \partial T)_P \qquad \alpha_P^* = (\partial \rho / \partial U)_P$

* * * * * * * *

- Heat capacity $C_P = (\partial U / \partial T)_P$

!! Hypothetically:

- sound speed,
- vapor pressure,
- electro-conductivity ... etc.

Anna Tauschwitz et al. // Hirschegg-2009-2010

Quasi-static heating of a stack target

$t > t_x$: expansion velocity is determined by shock hydrodynamics

1D target expansion in planar geometry; t_x can be detected by measuring the surface velocity

An. Tauschwitz et al., NIM B, in print (2009)

Hydrodynamic simulation

The "homogenization" time t_x can be detected by measuring the surface velocity

Anna Tauschwitz *et al.* // *Hirschegg*-2009-2010

Thermophysical investigations via HIB (novel regimes)

Tracing of the Boiling Curve

Goal for experimenters: - to catch the pressure jump moment !

Measurement of Uranium Vapor Pressure in Experiment with Surface Laser Heating

10000

1000 -

P, bar

EMMI: Cosmic Matter in the Laboratory **Plasma Physics** *with* **Intense Laser** *and* **Heavy Ion Beams** <u>*3rd Workshop: Moscow, May 20-21, 2010*</u>

Conclusions and **Perspectives**

In the case of **uranium** we meet **fundamental physical problem**:

- Phase transition in a system with mean-particle interaction strongly dependent on density (and temperature)

 It is promising to investigate this problem analytically via simplified plasma models

- It is **promising** to investigate this problem in **direct numerical simulation** in frames of *ab initiio* approaches

- It is **promising** to investigate non-congruent phase transitions **experimentally**. in particular with **intense laser** and **heavy ion** heating

! Only 1 – 3 kJ/g is needed **!**

Features of phase transitions in cosmic matter and laboratory

<u>Support</u>: **RAS Scientific Program** "Physics of Extreme State of Matter" **MIPT Research-Education Center** "Physics of Extreme State of Matter"