FUNDAMENTAL SHORT TIME-SCALE RELATIVISTIC PHYSICS: COLLECTIVE PHENOMENA. PARTICLE ACCELERATION AND PRODUCTION IN FEMTOSECOND LASER-MATTER INTERACTION

Anton Baldin

Institute for Advanced Studies, Dubna University Joint Institute for Nuclear Research

21 May, 2010

Outlook

- Relativistically invariant self-similarity approach in nuclear physics.
- Similarity of extreme states of nuclear matter and ultrashort laser-matter interaction.
- Correlation between geometric characteristics in Lobachevsky space and measurable parameters.

Schematic diagram illustrating the role of symmetry in fundamental physics.

Self-similarity is a special symmetry of solutions which consists in that the change in scales of independent variables can be compensated by the self-similarity transformation of other dynamical variables.

This results in a reduction of the number of the variables which any physical law depends upon.

This is the way in which the self-similarity laws following from dimensionality considerations in the region $P^2 >> M^2$ are extensively applied

$$P_{1} + xP_{2} = P_{1}' + \sum P_{i}'$$

$$\left(P_{1} + xP_{2} - P_{1}'\right)^{2} = \left(\sum P_{i}'\right)^{2}$$

$$P_1 - P_1' = q$$

$$(q+xP_2)^2 = \left(\sum P_i'\right)^2$$

 $2\sum_{k>1} (\gamma_{kl} - 1) M_k M_l$

$$q^{2} + 2xP_{2}q + x^{2}P_{2}^{2} = M^{2}$$
$$x = -\frac{q^{2}}{2P_{2}q}$$

The relationship between X_1 and X_2 is described by the conservation laws written in the form

$$\left(X_{1}M_{1}u_{1} + X_{2}M_{2}u_{2} - M_{3}u_{3}\right)^{2} = \left(M_{n}X_{1}u_{1}' + M_{n}X_{2}u_{2}' + \sum_{k=4}M_{k}u_{k}\right)^{2}$$

Essentially, we are using the correlation depletion principle in the relative four-velocity space which enables us to neglect the relative motion of not detected particles, namely the quantity $2\sum_{k>1} (\gamma_{kl} - 1)M_k M_l$ in the right-hand part of the above equation.

$$X_{1}X_{2}(\gamma_{12}-1) - X_{1}\left(\frac{M_{3}}{M_{p}}\gamma_{13} + \frac{M_{4}}{M_{p}}\right) - X_{2}\left(\frac{M_{3}}{M_{p}}\gamma_{23} + \frac{M_{4}}{M_{p}}\right) = \frac{M_{4}^{2} - M_{3}^{2}}{2M_{p}}$$

In the case of production of antiparticle with mass M_3 , the mass M_4 is equal to M_3 as a consequence of conservation of quantum numbers. In studying the production of protons and nuclear fragments $M_4 = -M_3$ as far as the minimum value of Π corresponds to the case that no other additional particles are produced. The values X_1 and X_2 obtained from the minimum Π are used to construct a universal description of the A-dependencies.

$$S = \left(P_1 + P_2\right)^2$$

$$\Pi = \frac{1}{2} \left(X_{1}^{2} + X_{2}^{2} + 2X_{1}X_{2}\gamma_{12} \right)^{\frac{1}{2}}$$
$$E \frac{d^{3}\sigma}{d^{3}p} = C_{1}A_{1}^{\alpha} (X_{1})A_{2}^{\alpha} (X_{2})f(\Pi)$$

Cumulative processes

S.V.Boyarinov, et al. Yad. Fis., v.57, N8, (1994) ,1452-1461.

O.P.Gavrishchuk et al. Nucl. Phys., A523 (1991) 589.

Twice cumulative

Jim Carroll Nucl. Phys. A488 (1989) 2192. A.Shor et al. Phys. Rev. Lett. 62 (1989) 2192. A.A.Baldin et al. Nucl. Phys., A519 (1990) 407. A.A.Baldin et al. Rapid Communications JINR, 3-92 (1992) 20.

Twice cumulative

A.Schroter et al. Z.Phys. A350, (1994), 101-113.

Inclusive pion spectra (various experiment types)

П

Inclusive pion spectra in selected high-multiplicity events

A.A.Baldin, E.N.Kladnitskaya, O.V. Rogachevsky, JINR Rapid Comm., (1999), N.2 [94]-99, p.20. M.Kh.Anikina, et al., Phys. Lett. B., (1997), v.397, p.30.

Antimatter production

A.A.Baldin, E.N.Kladnitskaya, O.V. Rogachevsky, JINR Rapid Comm., (1999), N.2 [94]-99, p.20. M.Kh.Anikina, et al., Phys. Lett. B., (1997), v.397, p.30.

Fundamental short time-scale relativistic physics: new collective phenomena

Laser powers >10¹⁹-10²⁰ W/cm²; Times <100 fs; Electron densities >10²⁰ cm⁻¹;

High efficiency (~20%) Quasi-monochromatic electron spectrum Low emittance Very short acceleration distance (100µm – 1mm)

 Mangles et al Nature vol.43 30 September 2004 pp.535-538
 Geddes, Esarey et al Nature vol.43 30 September 2004 pp.538-541

3. Pukhov, Malka et al Nature vol.43 30 September 2004 pp.541-544

$$E_{\gamma} + xP_1 = xP_1' + P_3 + P_4$$

$$x = \frac{E_{\gamma} (E_3 - P_3 \cos \alpha_3)}{M_1 (E_{\gamma} - E_3 - M_4)}$$

$$\sigma_{inv} = C_1 \exp\left(-\frac{X}{C_2}\right)$$

$$\sigma_{inv} = C_1 \exp\left(-\frac{\Pi}{C_2}\right)$$

Energy 100 [MeV]

Relativistic pair production: three steps

• Generation of MeV electrons in subcritical laser plasma 10¹⁸ W/cm²; $n_e = n_c \exp(-x/\Delta)$; $n_c = 10^{21}1/cm^3$; $\Delta = 30 mkm$

$$\frac{dN_e}{dE} \approx 3 \cdot 10^{10} \cdot E \cdot \exp(-1.2 \cdot E)$$

 Bremsstrahlung conversion of MeV electron energy into MeV photons in a high-Z solid target

8-10⁷ photons with the energy higher than 1 MeV

• e+e- pair production (photonuclear reactions)

e+e- pairs

FIG. 1. Measured energy distribution of the primary electrons (closedcircles, exponential fit as dashed line) used to produce positrons (expected spectrum as solid line). The line-shaded stripe gives the energy range covered by the detector. It encompasses $\sim 5\%$ of the total number of positrons.

$$\sigma_{inv} = C_1 \exp\left(-\frac{\Pi}{C_2}\right)$$

protons

Protons accelerated by 1 MeV "photons"

Protons accelerated by 10 MeV "photons"

Self-similar solution connects the initial and final states.

Initial state: intensity (energy); frequency; phase; duration; geometric dimensions of acting volume; target density, Z, A, temperature *Prepulse (dynamic target preparation).* <u>Final state:</u> fraction of four-momentum transferred; angular, energy spectra of registered radiations; time characteristics of final state.

The goal of the self-similarity approach is to reduce the number of variables = find a symmetry in the phenomenon of transition from initial to final state.

Proton distribution for two angular intervals in p(10GeV/c)+C

A. A. Baldin, E. G. Baldina, E. N. Kladnitskaya, O. V. Rogachevskii, Phys.Part.Nucl.Lett., vol. 1, no. 4, 7-16 (2004).

Normalized distributions of defects of triangles formed by all combinations of protons and all combinations of mesons registered in p(10GeV/c)+C

Note, that the model adequately reproduces inclusive spectra of both protons and π mesons. The distribution of trios of π -mesons, however, differs noticeably from

experimental data.

 $defect = \pi - \alpha_1 - \alpha_2 - \alpha_3$ *perimeter* = $\rho_1 + \rho_2 + \rho_3$

It is important to underline that, unlike the Euclidean space, the area-to-perimeter ratio for triangles in the Lobachevski space is limited.

π⁻C (40 GeV)

Analysis of Lobachevsky geometry

Regular polyhedrons with n=3, 4, 5, 10, 100, and 1000 inscribed in a circle with an increasing radius

$$tg \frac{\Pi_L(h)}{2} = e^{-h}$$
$$\Pi_L(h) = 2 \cdot arctg(e^{-h})$$

 $\Delta_{12}^3 = 2\Pi_L(h_3) - \alpha_3$

pC (10 GeV)

Directed Nuclear Radiation

Directed Nuclear Radiation P+C->pions at 10GeV

Lobachevsky Space

 $defect = \pi - \alpha_1 - \alpha_2 - \alpha_3$

Common features of relativistic nuclear physics and ultrashort laser-matter interaction:

Extreme states of matter; Relativism; Collective phenomena; Multiparticle interactions. The XX International Seminar on High Energy Physics Problems "*Relativistic Nuclear Physics* and Quantum Chromodynamics", organized by the Joint Institute for Nuclear Research will be held October 4-9, 2010 in Dubna, Russia.

Important Deadlines

• Abstracts submission before **August 31, 2010**. Abstracts should be sent to ishepp@theor.jinr.ru