Evaluation of FEB Configurations

COSY beam 02-2019

Jagiellonian University 17.01.2020

A. Malige

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778

National Science Centre, Poland 2016/23/P/ST2/04066 POLONEZ

Front-end electronics

> The FEE card contains two 8-channel PASTTREC chips (D.Przyborowski et al., JINST_013P_0516. (2016))

Schematic representation of the front end electronics functions with a concepts of signal shaping with analog circuitry.

- > To avoid a large dead time electronics integrate over only a small (20%) of the total charge
- Shapers for signal shaping.
- > Tail cancellation using CR-RC , Discriminator for signal separation.

Baseline Alignment

- ➢ Baseline adjustment 31 mV to + 31 mV (1 LSB = 2 mV)
- Automatic baseline alignment technique developed
- One channel at a time

 Uses TRBnet interface to Communicate with ASICs

Noise scan and base Alignment

- Lower noise = lower operational Dirsc.threshold.
- \succ Accurate recognition of baseline position (LSB).
- Multiple FEE's scanned simultaneously.
- Database to store and manage board settings.
- > Tests of the procedure with 55 Fe source, cosmic rays.

	Board	Setting 1	Setting 2	Setting 3
ain 4		(mV)	(mV)	(mV)
	Α	3.87	3.65	4.2
	В	5.26	4.8	5.5
	С	5.62	4.25	5.4

Beam @ COSY

- > FEB 2019 7 days of beamtime commissioned for Forward Tracker tests.
- COSY beam ideal for HADES/PANDA straw tests.
- External proton beam
 - Momentum : 3 GeV/c
 - Intensity: up to 400 kHz
 - Beam spot : $\Delta x \approx 2 \text{ cm}, \Delta y \approx 2 \text{ cm}$

Special Thanks to P.Wintz, P.Kulessa and FZ Jülich.

Measurement Goals

- Evaluation of straw modules
- Evaluation of the FEB's
- > Operational parameters
 - Operational Voltage
 - Threshold
 - Peaking Time
 - Gain
 - Baseline calibration
- Testing of the readout

In Beam @ COSY test setup

- > 8x Double layers, 32 straws each
 - 4x straight modules
 - \circ 2x skewed +5°
 - \circ 2x skewed -5°
- Plastic scintillator for
 Reference time
- > 16x PASTTREC FEE's,
 2x Readout TRB's
- Continuous trigger readout

Test setup

Time Over Threshold Vs Drift Time

> DT vs TOT for 8 layers in 500 ns time coincidence with the scintillator.

Anode position displacement

- Displaced anode gives rise to longer drift time's.
- Anode displacement can be of two kinds.
 - Perpendicular
 - Along
- Caused due to the bending or backling of straws
- Data can be cleaned by
 rejecting the second signal

Cross Talk

- Cross talk b/w straws is not observed
- > Cross talk b/w electronic channels causes fake hits
- ➤ ~1% of tracks in case of FT @ threshold 20 mV
- Corridor width of 5 straws

Corridor

1

Threshold

0

0

Detection Efficiency

Tracking

Track Cluster 1

7

- Pair Finding >
- **Cluster Finding** \succ
- Start time from a reference detector \succ
- Left / Right ambiguity \succ

Drift time calibration

- > DT aligned to 1/10 th of max.
- Straw-wise drift time calibration

Drift time from 8 channels before calibration (Left) and after calibration (Right).

HV scan : Drift and TOT

- High Voltage : 1650 , 1700 , 1750, 1800, 1850 V
- > Peaking Time : 15, **20**, 35 ns
- > Threshold : 6 , 20 mV

Residual vs Drift time

- Position correction for inclined tracks
- Projection from each time bin
- Δx_i Bin Mean
- Correction Δx_i added to calibration curve

200

All of the above done for each layer

DP Correction (Ex. Layer 5)

- > Corrected over 3 iterations
- > Over 35um of gain in resolution
- \succ *Chi*² filter

Spatial Resolution

- Resolution in the range of \succ 150 - 370 µm
- σ could be biased by the detector >geom.

10

20

15

25

 σ calculation using *Chi*² test \succ

0.14

0.12

0.08

0.06

0.04

0.02

0.1

TDC upgrade (STS2 full system)

- Cosmics data
- ➤ Triggered by scintillator @ 20 40 Hz

Comparison

Overview

- Detector has been tested for various electronic configurations
- > Preliminary track reconstruction has achieved a track resolution of σ ~170 µm
- > Full detector has been tested with the cosmics and 55 Fe and 90 Sn
- Installation of the detector at HADES in Feb 2020

Golden Settings

(Dr.Pawel Strzempek)

Setting 1 :

 \circ Gain 1mV/fC, Peaking time 15ns, TC_{C1} 13.5pF, TC_{R1} 19kΩ, TC_{C2} 1.5pF, TC_{R2} 23kΩ

Setting 2 :

 \circ Gain 1mV/fC, Peaking time 20ns, TC_{C1} 10.5pF, TC_{R1} 27kΩ, TC_{C2} 0.9pF, TC_{R2} 20kΩ

Setting 3 :

 \circ Gain 1mV/fC, Peaking time 35ns, TC_{C1} 6pF, TC_{R1} 31kΩ, TC_{C2} 1.65pF, TC_{R2} 23kΩ

Cross Talk

TDC upgrade

- Cosmics data
- Triggered by scintillator @ 20 40 Hz

