

Antihyperons in Nuclei (with PANDA)

Michael Papenbrock On behalf of the PANDA collaboration

Uppsala University

EMMI Workshop Trieste, Italy 04. July 2023

Outline

- Motivation
- The PANDA detector
- Antihyperons in nuclei
- Neutron skin measurements
- Hyperatom spectroscopy
- Double-strange hypernuclei
- Summary

Hyperon Puzzle

- Neutron stars among the most enigmatic objects in the Universe
- Extreme conditions: Masses of up to 2 solar masses, but radii as low as approx. 10 km
- Formation and fate determined by Equation of State (EoS)
- Gravity, strong force, and Pauli principle compete
 - Rapid increase of chemical potential at centre
 - Conversion of nucleons to hyperons energetically favourable
 - Relief of Fermi pressure softens EoS, reducing maximum mass to 1.4 solar masses
 - \succ Contradiction \rightarrow Hyperon Puzzle

Experimental approaches to hyperon fewbody interaction

- Hypernuclei
 - 2+3-body forces
 - High-precision γ -ray spectroscopy
 - Spin-dependent forces

Significant contribution to solving hyperon puzzle

- Hyperon femtoscopy
 - Low-energy scattering parameters
 - NY and YY pairs
 - E.g. ALICE and HADES

Facility for Antiproton and Ion Research (FAIR)

High Energy Storage Ring (HESR)

- Anti-protons with $1.5 < p_{beam} < 15 \; {\rm GeV}/c$
- Internal targets
 - Cluster-jet and pellet ($\bar{p}p$)
 - Foils (*pA*)
- Luminosity
 - Design $\sim 2 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - Phase One $\sim 10^{31} cm^{-2} s^{-1}$
- Quasi-continuous beam

PANDA – full setup

PANDA is a strangeness factory

- Simulation studies of single- and double-strange hyperons*
 - Exclusive measurements of
 - $\bar{p}p \to \bar{\Lambda}\Lambda, \Lambda \to p\pi^-, \bar{\Lambda} \to \bar{p}\pi^+$
 - $\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+$
 - $\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p \pi^-, \bar{\Xi}^+ \to \bar{\Lambda} \pi^+, \bar{\Lambda} \to \bar{p} \pi^+$
 - Ideal pattern recognition and PID
 - Background using Dual Parton Model ullet

p _{beam} (GeV/c)	Reaction	$\sigma(\mu b)$	ɛ (%)	Rate (s^{-1}) @ 10^{31} cm ⁻² s ⁻¹	S/B	Events / day	
1.64	$\bar{p}p ightarrow \overline{\Lambda}\Lambda$	64.0	16.0	44	114	$3.8\cdot10^6$	** 90%
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$ $\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9 20	5.3 6.1	2.4 5.0	>11** 21	207000 432000	5070
6.0							
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 1	8.2	0.3	274	260000	
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 0.3	7.9	0.1	65	86000	8

*By W. Ikegami Andersson (PhD thesis, Uppsala 2020) and G. Perez Andrade (Master thesis, Uppsala 2019)

C.L

Antihyperons in nuclei

- Baryon-antibaryon interaction can be studied by correlation functions (e.g. ALICE)
- PANDA: effective optical potential of $\overline{\Lambda}$ by exclusive ${}^{20}\mathrm{Ne}(\bar{p},\overline{\Lambda}\Lambda)$ reaction
- Abundant production of $\overline{Y}Y$ pairs near threshold
- Probe transport models for heavy ions, e.g. combining relativistic mean field models with momentum dependent interactions

Antihyperons in nuclei

- Measure asymmetry of \overline{Y} and Y $\alpha_T = \frac{p_T(Y) - p_T(\overline{Y})}{p_T(Y) + p_T(\overline{Y})}, \alpha_L = \frac{p_L(Y) - p_L(\overline{Y})}{p_L(Y) + p_L(\overline{Y})}$
- Momentum asymmetries relate to \overline{Y} interaction potential
- Possible within one hour of data taking
- PANDA unique

Probing neutron skin

- Many different approaches
 - Hadronic probes
 - Electromagnetic probes
 - Weak interaction
 - Astrophysical observations
- The interesting case of ⁴⁸Ca
 - Measure skin difference to ⁴⁰Ca
 - Ab-initio calculations possible

Probing neutron skin

- $\Lambda\overline{\Lambda}$ only in $\overline{p}p$, $\Sigma^{-}\overline{\Lambda}$ only in $\overline{p}n$
- Double ratio of probabilities $DR = \frac{p_{\Sigma}^{II} - \overline{\Lambda} / p_{\Lambda\overline{\Lambda}}^{II}}{p_{\Sigma}^{I} - \overline{\Lambda} / p_{\Lambda\overline{\Lambda}}^{I}} = \frac{1 + p_{abs}}{1 - p_{abs}}$
- $p_{\rm abs}$: antiproton absorption probability, related to integrated skin density
- Study evolution of neutron skin thickness for isotope chains, e.g. ^{129–136}Xe
- Adds to systematic uncertainties of hyperatom observables
- Preprint: arxiv:2209.03875

Hyperatoms and hypernuclei

Hyperatoms and hypernuclei

Support electronics 3 x HV/Preamp

12 cm

- Target positioning resolution: $5\mu m$
- Repeatibility: $\pm 18 \mu m$ (14000 measurements, requirement: $300 \mu m$)
- Preprint: arxiv:2303.13359

Hyperatoms and hypernuclei

X-ray spectroscopy of Ξ^- hyperatoms

- Observe nuclear cascade
- Shift of low atomic level sensitive to ±A potential near the nuclear surface
- Different neutron/proton content for different nuclei
 → isospin dependence of EA force
- PANDA unique

Sensitivity to nuclear structure

- Systematic uncertainties due to uncertainty of neutron skin thickness
- Best known nucleus: ²⁰⁸Pb

$\Lambda\Lambda$ hypernuclei

- Active secondary target
 - Boron-µStrip sandwich
- Form excited $\Lambda\Lambda$ hypernuclei by Ξ^- capture
- Measure $_{\Lambda\Lambda}X \gamma$ -transitions and momentum correlations
- Explore structure of light, double-strange hypernuclei
- Study few-body forces in baryonic matter

Nuclei	E_x	J^p	production probability						
	(MeV)		⁹ Be	¹⁰ B	¹¹ B	^{nat}B	^{12}C		
$\Lambda \Lambda^{4}H$	0.0	1+	0.00866	0.02410	0.00000	0.00472	0.0000		
$\Lambda\Lambda^{5}H$	0.0	$\frac{1}{2}^{+}$	0.02120	0.02209	0.03199	0.03005	0.00633		
Δ ⁵ He	0.0	1 2+	0.00000	0.00330	0.00000	0.00065	0.00000		
$\Lambda \Lambda^6$ He	0.0	$\tilde{0}^+$	0.02350	0.03175	0.00977	0.01408	0.03304		
$\Lambda \Lambda^{7}$ He	0.0	3-	0.10201	0.03038	0.04407	0.04139	0.00649		
⁸ _{ΛΛ} He	0.0	$\tilde{0}^+$	0.01880	0.00445	0.00490	0.00481	0.00000		
	1.80	2^{+}	0.08201	0.01846	0.02351	0.02252	0.00000		
⁹ He	0.0	3-	0.00426	0.00017	0.00292	0.00238	0.00000		
	2.92	5-2	0.01859	0.00021	0.00435	0.00354	0.00000		
AÅLi	0.0	3-	0.00016	0.00635	0.00000	0.00124	0.00000		
A ⁸ Li	0.0	Ĩ+	0.01055	0.01991	0.00233	0.00578	0.00209		
	1.36	3^{+}	0.01998	0.03976	0.00212	0.00950	0.00150		
	5.63	2^{+}	0.00617	0.01747	0.00000	0.00342	0.00000		
۸ ⁹ Li	0.0	3-	0.02199	0.03041	0.03948	0.03770	0.02574		
	0.73	1 2	0.01079	0.01452	0.01803	0.01734	0.01236		
	4.55	$\frac{7}{9}$	0.03997	0.04398	0.04528	0.04502	0.04207		
	5.96	5-	0.02870	0.02975	0.02907	0.02920	0.02864		
$^{10}_{\Lambda\Lambda}$ Li	0.0	$\tilde{2}^+$	0.00000	0.00702	0.03799	0.03192	0.00000		
	0.98	1+	0.00000	0.00404	0.02138	0.01798	0.00000		
	2.255	3^{+}	0.00000	0.00929	0.04422	0.03737	0.00000		
$\Lambda^{9}_{\Lambda}Be$	0.0	3-	0.00000	0.00497	0.00003	0.00100	0.00000		
	0.71	$\frac{1}{2}^{-}$	0.00000	0.00227	0.00001	0.00045	0.00000		

Summary

- PANDA excellent tool for hypernuclear physics from the start
- Explore strong interaction in the nuclear periphery
- Observables relate to equation of state of neutron stars
- Key topics
 - Antihyperon potential in cold baryonic matter
 - Hyperatoms: Ξ^- potential in neutron-rich environments
 - Structure of $\Lambda\Lambda$ hypernuclei

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Thank you for your attention!

PANDA – Phase One setup

Prospects

- JPARC
 - Kaon beam
 - Extended target (cm)
 - $\frac{\rho_n}{\rho_p} \sim 1$
- PANDA
 - Stored antiproton beam
 - Thin secondary target (mm)
 - $\frac{\rho_n}{\rho_p} \sim 2$
- PANDA has unique explanatory potential

22

Components in EoS

- Strong interaction in the confinement domain
- Three-body forces
 - Nucleon-nucleon-hyperon (NNY)
 - Nucleon-hyperon-hyperon (NYY)
 - \succ Could be repulsive \rightarrow counteract softening of EoS
- Two-body force
 - Nucleon-hyperon (NY)
 - Hyperon-hyperon (YY)
 - Repulsive core would stiffen EoS or make hyperon presence energetically unfavourable
- Data on hyperon interaction too scarce to constrain theoretical models

- 2022 beam time: p+p@4.5 GeV
 - Data analysis ongoing
- Opportunity for YN and YY interaction studies
- High sensitivity in low energy region

