ExtreMe Matter Institute EMMI

EMMI Workshop

Bound states and particle interactions in the 21st century

Meson－baryon scattering and Λ（1405） in baryon chiral perturbation theory

Xiu－Lei Ren（任修磊）

Helmholtz－Institut Mainz

In collaboration with：
E．Epelbaum（RUB），J．Gegelia（RUB），and U．－G．Meißner（Bonn）

OUTLINE

\square Introduction
\square Theoretical framework
\square Results and discussion
\square Summary

Meson-baryon scattering

\square Simple process: lowest-lying MB scattering

\square Interesting phenomena

- πN scattering: 30K data points of GWU
\checkmark Sigma term $\sigma_{\pi N}$, key input of neutralino-nucleon cross section

- $\bar{K} N$ interaction is important in strangeness nuclear physics
\checkmark Interaction is strongly attractive, generating $\Lambda(1405)$ resonance
$\checkmark \bar{K} N N, \bar{K} N N N$, multi-antikaonic nuclei J-PARC, FINUDA@DAФNE, etc
\checkmark Kaon-condensate (?) in the interior of neutron star s.Pal et al., NPA674(2000)553 see Oton Vázquez Doce's talk @ Monday
- Deepen understanding of SU(3) dynamics in nonperturbative QCD

$\Lambda(1405)$ resonance

$\square \Lambda(1405)$ state is an exotic candidate

\square Variety of theoretical studies

- QCD sum rules L.s. Kisslinger,EPJA2011...
- Phenomenological potential model A. Cieply, NPA2015...
- Skyrme model T. Ezoe,PRD2020...
- Hamiltonian effective field theory z.w. Lu,PRD2017...
- Chiral unitary approach N.Kaiser,NPA1999; E.Oset,NPA1998; J.A.OIlerzU.-G.MeiBnerfPLBz2001...

Structure of $\Lambda(1405)$ resonance

\square Double-pole predicted by chiral unitary approach

- Pole positions

PDG(2022) Review 83

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. [14, 15], NLO	$1424_{-23}^{+7}-i 26_{-14}^{+3}$	$1381_{-6}^{+18}-i 81_{-8}^{+19}$
Ref. [17], Fit II	$1421_{-2}^{+3}-i 19_{-5}^{+8}$	$1388_{-9}^{+9}-i 114_{-25}^{+24}$
Ref. [18], solution \#2	$1434_{-2}^{+2}-i 10_{-1}^{+2}$	$1330_{-5}^{+4}-i 56_{-11}^{+17}$
Ref. [18], solution \#4	$1429_{-7}^{+8}-i 12_{-3}^{+2}$	$1325_{-15}^{+15}-i 90_{-18}^{+12}$

$\Lambda(1405) 1 / 2^{-}$
$I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$Status: $* * * *$
\checkmark pole 2: needs further studies to fix its position
\square Double-pole structure is verified by LQCD
Daniel Mohler's @ Meson 2023

$$
m_{\pi}=200 \mathrm{MeV}, m_{K}=480 \mathrm{MeV}
$$

(preliminary) result for the poles is
Pole II $\quad 1395(9)_{\text {stat }}(2)_{\text {model }}(16)_{\mathrm{a}} \mathrm{MeV}$
Pole I $1456(14)_{\text {stat }}(2)_{\text {model }}(16)_{\mathrm{a}} \mathrm{MeV}$ $-i \times 11.7(4.3)_{\text {stat }}(4)_{\text {model }}(0.1)_{\mathrm{a}} \mathrm{MeV}$

$S=-2: \Xi(1620), \Xi(1690)$ resonances

\square Dynamically generated in UChPT

- WT terms: A. Ramos, et al., PRL(2002), M. Lutz, J. Nieves ...
- NLO: A. Feijoo, et al., PLB(2023)
see Angels Ramos's talk @ today

- Femtoscopy @ ALICE

- First evidence of $\equiv(1620)$ in the ΛK decay channel
- Femtoscopic data + UChPT@NLO
$\checkmark \Xi(1620)$: mainly molecular state of $\bar{K} \Sigma$ $\checkmark \Xi(1690)$: virtual state, mainly coupled to $\bar{K} \Sigma$

see Dimitar Mihaylov’s talk @ Monday

Chiral Unitary approach

\square Chiral symmetry of low-energy QCD + Unitary Relation
J.A.Oller et al.,PPNP45(2000)157-242; T.Hyodo et al.,PPNP120 (2021)103868 ...
\square Interaction kernel V : calculate in ChPT order by order

- Leading, next-to-leading order, ...

\square Scattering T-matrix: solve scattering equations

- Lippmann-Schwinge equation or Bethe-Salpeter equation

$$
T\left(p^{\prime}, p\right)=V\left(p^{\prime}, p\right)+i \int \frac{d^{4} k}{(2 \pi)^{4}} V\left(p^{\prime}, k\right) G(k) T(k, p)
$$

Chiral Unitary approach

\square Chiral symmetry of low-energy QCD + Unitary Relation
J.A.Oller et al.,PPNP45(2000)157-242; T.Hyodo et al.,PPNP120 (2021)103868 ...

- Interaction kernel V : calculate in ChPT order by order
- Leading, next-to-leading order, ...

\square Scattering T-matrix: solve scattering equations

- Lippmann-Schwinge equation or Bethe-Salpeter equation

$$
\begin{aligned}
& T\left(p^{\prime}, p\right)=V\left(p^{\prime}, p\right)+i \int \frac{d^{4} k}{(2 \pi)^{4}} V\left(p^{\prime}, k\right) G(k) T(k, p) \\
&
\end{aligned}
$$

Neglecting off-shell effect
\rightarrow cause troubles in the study of three-body interaction?

Chiral Unitary approach

\square Chiral symmetry of low-energy QCD + Unitary Relation
J.A.Oller et al.,PPNP45(2000)157-242; T.Hyodo et al.,PPNP120 (2021)103868 ...

- Interaction kernel V : calculate in ChPT order by order
- Leading, next-to-leading order, ...

\square Scattering T-matrix: solve scattering equations

- Lippmann-Schwinge equation or Bethe-Salpeter equation

$$
\begin{aligned}
& T\left(p^{\prime}, p\right)=V\left(p^{\prime}, p\right)+i \int \frac{d^{4} k}{(2 \pi)^{4}} V\left(p^{\prime}, k\right) G(k) T(k, p) \\
&
\end{aligned}
$$

Neglecting off-shell effect
\rightarrow cause troubles in the study of three-body interaction?

- Finite cutoff or subtraction constant to renormalize the loop integral

$$
G^{R}(E, \Lambda) \text { or } G^{R}\left(E, \alpha_{i}\right)
$$

Cutoff/Model dependence

In this work

\square Facing the rapid progress of precision experiments, a modelindependent formalism would be needed ALICE, AMADEUS, J-PARC, STAR.
\square We tentatively propose a renormalized framework for mesonbaryon scattering using time-ordered perturbation theory with the covariant chiral Lagrangians

- Obtain the potential and scattering equation on an equal footing
- Include the off-shell effects of potential and utilize the subtractive renormalization to obtain the renormalizable T-matrix
- Apply to the pion-nucleon scattering at LO
- Extend to $S=-1$ sector and investigate the $\Lambda(1405)$ state

XLR, E. Epelbaum, J. Gegelia and U.-G. Meißner,
Eur. Phys. J. C80 (2020) 406; Eur. Phys. J. C81 (2021) 582; work in progress

Theoretical framework

Time-ordered perturbation theory

\square Definition

- Re-express the Feynman integral in a form that makes the connection with on-mass-shell (off-energy shell) state explicit.
\checkmark Instead the propagators for internal lines as the energy denominators for intermediate states
- TOPT or old-fashioned perturbation theory
\square Advantages
- Explicitly show the unitarity

- Easily to tell the contributions of a particular diagram
\square Obtain the rules for time-ordered diagrams
- Perform Feynman integrations over the zeroth components of the loop momenta
- Decompose Feynman diagram into sums of time-ordered diagrams
- Match to the rules of time-ordered diagrams

Diagrammatic rules in TOPT

- External lines

Spin 0 boson (in, out)

Spin 1/2 fermion (in, out)

- Internal lines

Spin 0 (anti-)boson

Spin 1/2 fermion
anti-fermion

- Intermediate state

A set of lines between two vertices

- Interaction vertices: the standard Feynman rules
- Take care of zeroth components of integration momenta

1

$$
u(\mathbf{p}), \quad \bar{u}\left(\mathbf{p}^{\prime}\right)
$$

$$
\begin{array}{ll}
\frac{1}{2 \epsilon_{q}} & \epsilon_{q} \equiv \sqrt{\mathbf{q}^{2}+M^{2}} \\
\frac{m}{\omega_{p}} \sum u(\mathbf{p}) \bar{u}(\mathbf{p}) & \omega_{p} \equiv \sqrt{\mathbf{p}^{2}+m^{2}} \\
\frac{m}{\omega_{p}} \sum u(\mathbf{p}) \bar{u}(\mathbf{p})-\gamma_{0}
\end{array}
$$

$$
\frac{1}{E-\sum_{i} \omega_{p_{i}}-\sum_{j} \epsilon_{q_{j}}+i \epsilon}
$$

$$
\checkmark \text { particle } \quad p^{0} \rightarrow \omega(p, m)
$$

$$
\checkmark \text { antiparticle } p^{0} \rightarrow-\omega(p, m)
$$

Meson-baryon scattering in TOPT

\square Interaction kernel / potential V

- Define: sum up the one-meson and one-baryon irreducible diagrams
- Power counting: Q / Λ_{χ} systematic ordering of all graphs
\square Scattering equation

- Coupled-channel integral equation for T-matrix

$$
\begin{aligned}
T_{M_{j} B_{j}, M_{i} B_{i}}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p} ; E\right) & =V_{M_{j} B_{j}, M_{i} B_{i}}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p} ; E\right) \\
& +\sum_{M B} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} V_{M_{j} B_{j}, M B}\left(\boldsymbol{p}^{\prime}, \boldsymbol{k} ; E\right) G_{M B}(E) T_{M B, M_{i} B_{i}}(\boldsymbol{k}, \boldsymbol{p} ; E)
\end{aligned}
$$

- Meson-baryon Green function in TOPT

$$
G_{M B}(E)=\frac{m}{2 \omega(k, M) \omega(k, m)} \frac{1}{E-\omega(k, M)-\omega(k, m)+i \epsilon}
$$

Meson-baryon scattering in TOPT

\square Interaction kernel / potential V

- Define: sum up the one-meson and one-baryon irreducible diagrams
- Power counting: Q / Λ_{χ} systematic ordering of all graphs
\square Scattering equation

- Coupled-channel integral equation for T-matrix

$$
\begin{aligned}
T_{M_{j} B_{j}, M_{i} B_{i}}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p} ; E\right) & =V_{M_{j} B_{j}, M_{i} B_{i}}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p} ; E\right) \\
& +\sum_{M B} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} V_{M_{j} B_{j}, M B}\left(\boldsymbol{p}^{\prime}, \boldsymbol{k} ; E\right) G_{M B}(E) T_{M B, M_{i} B_{i}}(\boldsymbol{k}, \boldsymbol{p} ; E)
\end{aligned}
$$

- Meson-baryon Green function in TOPT

$$
G_{M B}(E)=\frac{m}{2 \omega(k, M) \omega(k, m)} \frac{1}{E-\omega(k, M)-\omega(k, m)+i \epsilon}
$$

Potential and scattering equation are obtained on an equal footing!

Baryon-baryon scattering in TOPT

- Baryon-baryon scattering equation

- Potential V: sum up the two-baryon irreducible time-ordered diagrams
- Two-baryon Green function

$$
G_{i j}^{B B}(E)=\frac{m_{i} m_{j}}{\omega\left(k, m_{i}\right) \omega\left(k, m_{j}\right)} \frac{1}{E-\omega\left(k, m_{i}\right)-\omega\left(k, m_{j}\right)+i \epsilon}
$$

\checkmark Generalized Kadyshevsky propagator of NN scattering \quad. Kadyshevsky, NPB (1968)
\checkmark SELF-CONSISTENTLY obtained in TOPT

- Successfully applied to the NN and YN interactions
V. Baru, E. Epelbaum, J. Gegelia, XLR, Phys. Lett. B 798, 134987 (2019)

XLR, E.Epelbaum, J.Gegelia, Phys. Rev. C 101, 034001 (2020)
XLR, E. Epelbaum, J. Gegelia, Phys. Rev. C 106, 034001 (2022) / in preparation

MB and BB scatterings in TOPT

Unify the description of SU(3) meson-baryon and baryon-baryon scatterings within our TOPT framework

Results and discussion

Leading order potential

\square Chiral effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LO}}= & \frac{F_{0}^{2}}{4}\left\langle u_{\mu} u^{\mu}+\chi_{+}\right\rangle+\left\langle\bar{B}\left(i \gamma_{\mu} \partial^{\mu}-m\right) B\right\rangle+\frac{D / F}{2}\left\langle\bar{B} \gamma_{\mu} \gamma_{5}\left[u^{\mu}, B\right]_{ \pm}\right\rangle \\
& -\frac{1}{4}\left\langle V_{\mu \nu} V^{\mu \nu}-2 \dot{M}_{V}^{2}\left(V_{\mu}-\frac{i}{g} \Gamma_{\mu}\right)\left(V^{\mu}-\frac{i}{g} \Gamma^{\mu}\right)\right\rangle+g\left\langle\bar{B} \gamma_{\mu}\left[V^{\mu}, B\right]\right\rangle
\end{aligned}
$$

- Vector mesons included as explicit degrees of freedom
\checkmark One-vector meson exchange potential instead the Weinberg-Tomozawa term
\checkmark Improve the ultraviolet behaviour without changing the low-energy physics
\square Time ordered diagrams

(a)

(b)

(c)

- LO potential in TOPT
\checkmark Dirac spinor is decomposed as $u_{B}(p, s)=u_{0}+\left[u(p)-u_{0}\right] \equiv(1,0)^{\dagger} \chi_{s}+$ high order

| $V_{M_{j} B_{j}, M_{i} B_{i}}^{(a+b)}$ | $=-\frac{1}{32 F_{0}^{2}} \sum_{V=K^{*}, \rho, \omega, \phi} C_{M_{j} B_{j}, M_{i} B_{i}}^{V} \frac{\grave{M}_{V}^{2}}{\omega_{V}\left(q_{1}-q_{2}\right)}\left(\omega_{M_{i}}\left(q_{1}\right)+\omega_{M_{j}}\left(q_{2}\right)\right)$ | $V_{M_{j} B_{j}, M_{i} B_{i}}^{(c)}=\frac{1}{4 F_{0}^{2}} \sum_{B=N, \Lambda, \Sigma,, \Xi} C_{M_{j} B_{j}, M_{i} B_{i}}^{B} \frac{m_{B}}{\omega_{B}(P)} \frac{\left(\boldsymbol{\sigma} \cdot \boldsymbol{q}_{2}\right)\left(\boldsymbol{\sigma} \cdot \boldsymbol{q}_{1}\right)}{E-\omega_{B}(P)}$. |
| ---: | :--- | ---: | :--- |
| | $\times\left[\frac{1}{E-\omega_{B_{i}}\left(p_{1}\right)-\omega_{V}\left(q_{1}-q_{2}\right)-\omega_{M_{j}}\left(q_{2}\right)}+\frac{1}{E-\omega_{B_{j}}\left(p_{2}\right)-\omega_{V}\left(q_{1}-q_{2}\right)-\omega_{M_{i}}\left(q_{1}\right)}\right]$ | $V_{M_{j} B_{j}, M_{i} B_{i}}^{(d)}=\frac{1}{4 F_{0}^{2}} \sum_{B=N, \Lambda, \Sigma, \Xi} \tilde{C}_{M_{j} B_{j}, M_{i} B_{i}}^{B} \frac{m_{B}}{\omega_{B}(K)} \frac{\left(\boldsymbol{\sigma} \cdot \boldsymbol{q}_{1}\right)\left(\boldsymbol{\sigma} \cdot \boldsymbol{q}_{2}\right)}{E-\omega_{M_{i}}\left(q_{1}\right)-\omega_{M_{j}}\left(q_{2}\right)-\omega_{B}(K)}$. |

Ultraviolet Behavior

\square One-loop integral $V G V$

$$
I_{V G V}=\int \frac{d^{3} k}{(2 \pi)^{3}} V\left(p^{\prime}, k\right) G(k) V(k, p) \begin{cases}V=V_{\mathrm{VME}}, & I_{V G V} \xrightarrow{k \rightarrow \infty} \int d^{3} k \frac{1}{k} \frac{1}{k^{3}} \frac{1}{k} \\ V=V_{\mathrm{WT}}, & I_{V G V} \xrightarrow{k \rightarrow 0} \int d^{3} k k \frac{1}{k^{3}} k\end{cases}
$$

- Scattering amplitude from the VME potential is cutoff independent!

$$
T_{\mathrm{VME}}=V_{\mathrm{VME}}+V_{\mathrm{VME}} G T_{\mathrm{VME}}
$$

Ultraviolet Behavior

\square One-loop integral $V G V$

$$
I_{V G V}=\int \frac{d^{3} k}{(2 \pi)^{3}} V\left(p^{\prime}, k\right) G(k) V(k, p) \begin{cases}V=V_{\mathrm{VME}}, & I_{V G V} \xrightarrow{k \rightarrow \infty} \int d^{3} k \frac{1}{k} \frac{1}{k^{3}} \frac{1}{k} \\ V=V_{\mathrm{WT}}, & I_{V G V} \xrightarrow{k \rightarrow 0} \int d^{3} k k \frac{1}{k^{3}} k\end{cases}
$$

- Scattering amplitude from the VME potential is cutoff independent!

$$
T_{\mathrm{VME}}=V_{\mathrm{VME}}+V_{\mathrm{VME}} G T_{\mathrm{VME}}
$$

\square Iteration of the crossed-Born term is also renormalizable

$$
\rightarrow \int d^{3} k \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}^{\prime} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}}}{k} \frac{1}{k^{3}} \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}}}{k}
$$

\square Only divergence is from the iteration of the Born term

$$
\frac{y_{1}, \cdots \cdots}{} \rightarrow \int d^{3} k \boldsymbol{\sigma} \cdot \boldsymbol{p}^{\prime} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}} k \frac{1}{k^{3}} k \boldsymbol{\sigma} \cdot \boldsymbol{p} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}}
$$

Quadratical divergence

Subtractive renormalization

\square LO potential: one-baryon irreducible and reducible parts

$$
V_{\mathrm{LO}}=V_{I}(
$$

- LO T-matrix

$$
T_{\mathrm{LO}}=V_{\mathrm{LO}}+V_{\mathrm{LO}} G T_{\mathrm{LO}}
$$

$$
\left\{\begin{array}{l}
T_{\mathrm{LO}}=T_{I}+\left(1+T_{I} G\right) T_{R}\left(1+G T_{I}\right) \\
T_{I}=V_{I}+V_{I} G T_{I} \\
T_{R}=V_{R}+V_{R} G\left(1+T_{I} G\right) T_{R}
\end{array}\right.
$$

- Irreducible part: $T_{I} \xrightarrow{\Lambda \sim \infty}$ Finite
- Reducible part: $T_{R} \xrightarrow{\Lambda \sim \infty}$ Divergent
\checkmark Potential can be rewritten as separable form

$$
V_{R}\left(p^{\prime}, p ; E\right)=\xi^{T}\left(p^{\prime}\right) C(E) \xi(p) \quad \mathrm{C}(\mathrm{E}) \text { : constant } \quad \xi^{T}(q):=(1, q)
$$

$\checkmark T_{R}$ can be rewritten as $\quad T_{R}\left(p^{\prime}, p ; E\right)=\xi^{T}\left(p^{\prime}\right) \chi(E) \xi(p) \quad \chi(E)=\left[C^{-1}-\xi G \xi^{T}-\xi G T_{I}^{S} G \xi^{T}\right]^{-1}$
D.B.Kaplan, et al,NPB478,629(1996); E. Epelbaum, et al.,EPJA51,71(2015)
\checkmark Using subtractive renormalization, replacing Green function $\quad G^{R n}=G(E)-G\left(m_{B}\right)$
Renormalized LO T-matrix

$$
T_{\mathrm{LO}}^{R n}=T_{I}+\left(\xi^{T}+T_{I} G^{R n} \xi^{T}\right) \chi^{R n}(E)\left(\xi+\xi G^{R n} T_{I}\right)
$$

Pion-Nucleon scattering

\square Description phase shifts of pion-nucleon scattering

- non-perturbative LO with $\Lambda \rightarrow \infty$
--- perturbative LO-rho
--- perturbative LO-WT
- WI08
- RS

- Rho-meson-exchange contribution is similar as WT term.
- Phase shifts from non-perturbative renormalized amplitude are only slightly different from the ones of the perturbative approach.
\checkmark Our non-perturbative treatment is valid, since ChPT has good convergence in $\mathrm{SU}(2)$ sector
XLR, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C80 (2020) 406

S=-1 meson-baryon scattering

\square Four coupled channels $\bar{K} N, \pi \Sigma, \eta \Lambda, K \Xi$

- Solve the scattering equation in isospin basis by taking into account the offshell effects of potential
- Use subtractive reormalization and take $\Lambda \rightarrow \infty$ to obtain the renormalized T-matrix

No free parameters needed to be fitted!

\square Two pole positions of $\Lambda(1405)$

		lower pole	higher pole
This work	$F_{0}=F_{\pi}$	$1337.7-i 79.1$	$1430.9-i 8.0$
$($ LO $)$	$F_{0}=103.4$	$1348.2-i 120.2$	$1436.3-i 0.7$
	Y. Ikeda,NPA(2012)	$1381_{-6}^{+18}-i 81_{-8}^{+19}$	$1424_{-23}^{+7}-i 26_{-14}^{+3}$
	Z.-H.Guo,PRC(2013)-Fit II	$1388_{-9}^{+9}-i 114_{-25}^{+24}$	$1421_{-2}^{+3}-i 19_{-5}^{+8}$
NLO	M.Mai,EPJA2015)-sol-2	$1330_{-5}^{+4}-i 56_{-11}^{+17}$	$1434_{-2}^{+2}-i 10_{-1}^{+2}$
	M.Mai,EPJA2015)-sol-4	$1325_{-15}^{+15}-i 90_{-18}^{+12}$	$1429_{-7}^{+8}-i 12_{-3}^{+2}$

$\pi \Sigma$ invariant mass spectrum

- Consistent with M. Mai EPJA(2015), in particular for the lower pole

Coupling strengths for $\wedge(1405)$

- On-shell scattering T-matrix can be approximated by

$$
T_{i j} \simeq 4 \pi \frac{g_{i} g_{j}}{z-z_{R}}
$$

- $g_{i}\left(g_{j}\right)$: coupling strength of the initial (final) transition channel

	Lower pole		Higher pole	
	g_{i}	$\left\|g_{i}\right\|$		
$\pi \Sigma$	$1.83+i 1.90$	2.64	$-0.38+i 0.84$	0.92
$\bar{K} N$	$-1.59-i 1.47$	2.17	$2.16-i 0.83$	2.31
$\eta \Lambda$	$-0.19-i 0.67$	0.69	$1.59-i 0.36$	1.63
$K \Xi$	$0.72+i 0.81$	1.08	$-0.10+i 0.34$	0.35

- Two poles of $\Lambda(1405)$ have different coupling nature
\checkmark Lower pole couples predominantly to the $\pi \Sigma$ channel
\checkmark Higher pole couples strongly to the $\bar{K} N$ channel

$\bar{K} N$ scattering observables

\square Scattering length: constrained by scattering + SIDDHARTA kaonic deuterium data

M. Döring and U.-G. Meißner, Phys. Lett. B 704, 663 (2011)

Our LO prediction (isospin basis)

- Isospin I=0

$$
a_{0}=-2.50+i 1.37 \mathrm{fm}
$$

outside the allowed region

- Isospin I=1

$$
a_{1}=0.33+i 0.72 \mathrm{fm}
$$

within the allowed region
\square Total cross section of $K^{-} p$

- Our LO prediction covers well $K^{-} p \rightarrow \pi^{ \pm, 0} \Sigma^{ \pm, 0}$ cross section
- slightly larger than the data of $K^{-} p \rightarrow K^{-} p, \pi^{0} \Lambda$

Higher order studies

\square Maintain the scattering T-matrix renormalizable

- Take LO potential non-perturbatively, use the subtractive renormalization
- Beyond LO correction is perturbatively included
\square Such as the NLO calculation

$$
\begin{aligned}
& V=V_{\mathrm{LO}}+V_{\mathrm{NLO}} \longrightarrow T=T_{\mathrm{LO}}+T_{\mathrm{NLO}} \\
& T_{\mathrm{LO}}=T_{I}+\left(\xi^{T}+T_{I} G^{R n} \xi^{T}\right) \chi^{R n}(E)\left(\xi+\xi G^{R n} T_{I}\right) \\
& T_{\mathrm{NLO}}=\left(1+G T_{\mathrm{LO}}\right) V_{\mathrm{NLO}}\left(1+G T_{\mathrm{LO}}\right)
\end{aligned}
$$

\square T-matrix in the particle basis

- $\mathrm{S}=-1$ sector, 10 coupled channels: $K^{-} p, \bar{K}^{0} n, \pi^{0} \Lambda, \pi^{0} \Sigma^{0}, \pi^{+} \Sigma^{-}, \pi^{-} \Sigma^{+}, \eta \Lambda, \eta \Sigma^{0}, K^{+} \Xi^{-}, K^{0} \Xi^{0}$
- Fit: cross section, decay ratios, energy shift and width of kaonic hydrogen from SIDDHARTA + Femtoscopic data

Summary

\square A renormalized framework for MB scattering is proposed

- Time-ordered perturbation theory + Covariant chiral Lagrangians
- Take into account the off-shell effects of potential
- Use subtractive renormalization
\checkmark achieve T-matrix is cutoff-independent
- Apply to πN scattering and extend to the $\mathrm{S}=-1$ sector at LO
- Obtain the two-pole structure of $\Lambda(1405)$

Summary

\square A renormalized framework for MB scattering is proposed

- Time-ordered perturbation theory + Covariant chiral Lagrangians
- Take into account the off-shell effects of potential
- Use subtractive renormalization
\checkmark achieve T-matrix is cutoff-independent
- Apply to πN scattering and extend to the $\mathrm{S}=-1$ sector at LO
- Obtain the two-pole structure of $\Lambda(1405)$
\square We are working on the $S=-2$ sector at LO
- Very preliminary result:
- $\Xi(1620)$ is not found at second Riemann sheet, while $\Xi(1690)$ is survive
\square Next-leading order study is planed

Summary

\square A renormalized framework for MB scattering is proposed

- Time-ordered perturbation theory + Covariant chiral Lagrangians
- Take into account the off-shell effects of potential
- Use subtractive renormalization
\checkmark achieve T-matrix is cutoff-independent
- Apply to πN scattering and extend to the $\mathrm{S}=-1$ sector at LO
- Obtain the two-pole structure of $\Lambda(1405)$
\square We are working on the $S=-2$ sector at LO
- Very preliminary result:
- $\Xi(1620)$ is not found at second Riemann sheet, while $\Xi(1690)$ is survive
\square Next-leading order study is planed
Thank you for your attention!

Back up

