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Light clusters in hot, dense matter 



Cluster formation at LHC/CERN 

A. Andronic, P. Braun-Munziger, K. Redlich, J. Stachel, Nature 561, 321 (2018) 

T = 156 MeV 

ALICE@LHC 

Excellent description 
Of data by the  
Statistical model 
(chemical equilibrium)  



Questions 

1.  Is local thermodynamic equilibrium 
relevant? – Nonequilibrium process, formation of clusters/
correlations, transport codes for single-particle distribution, 
coalescence, QMD, FMD/AMD, freeze-out,…  

2.  Is the statistical equilibrium described by 
uncorrelated hadrons (statistical 
hadronization approach) correct?  

        – role of multiparticle interactions, dense pion gas,  
        medium  modifications, continuum correlations, …  
        Spectral function: finite life-time, background  



Density effects? 

Proton anomaly and the Dashen, Ma, Bernstein S-matrix approach 

The Beth-Uhlenbeck equation is identical  

with the Dashen, Ma, Bernstein approach.   



Problem: Nonequilibrium ? 

State of the system in the past 

Construction of the relevant statistical operator at time t 

Generalized Gibbs distribution 

But: von Neumann equation? 
Entropy? 

-> maximum 



selection of the set of relevant observables 

extended von Neumann equation 

principle of weakening of initial correlations (Bogoliubov, Zubarev) 

time evolution operator relevant statistical operator 

self-consistency relations 

after thermodynamic limit 

maximum of information entropy 

Nonequilibrium statistical operator (NSO) 

generalized Gibbs distribution 



Formation of light clusters in heavy 
ion reactions, transport codes 

Wigner distribution 

cluster mean-field potential 

loss rate 

in-medium  
breakup transition operator 

breakup cross section 

C. Kuhrts, M. Beyer, P. Danielewicz, and G. Ropke, Phys. Rev. C 63, 034605 (2001) 
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Freeze-out temperatures and densities 



Freeze-out in the phase diagram 
from M. Lorenz Jørgen Randrup, Jean Cleymans:  

Freezeout density (2016) 

Nonequilibrium evolution of the fireball. 
Where the clusters are formed? Very early? Late? 



nucleon-nucleon interaction potential  
•  Effective potentials  
      (like atom-atom potential) 
      binding energies, scattering 

•   non-local, energy-dependent? 
      QCD? 

•  microscopic calculations  
     (AMD, FMD)  

•  single-particle descriptions: 
     Thomas-Fermi approximation 
     shell model  
     density functional theory (DFT) 
 
•  correlations, clustering  
     low-density nα nuclei, Volkov 



Many-particle theory, spectral function 

Spectral function 

Equation of state 

Expansion for small damping (Im Σ) 

Quasiparticle energy 

Correlations (bound states) in Im Σ 
Cluster decomposition, Bethe-Salpeter equation 

Green function G, 
Self-energy Σ 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

medium effects 



Quasiparticle approximation for nuclear matter 

Klaehn et al., PRC 2006 

But: 
cluster  
formation 

Incorrect 
low-density  
limit 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 

Inclusion of the light clusters (d,t,3He,4He) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 



Ideal mixture of reacting nuclides 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number  
excited states, continuum correlations 

Chemical equilibrium, mass action law, 
Nuclear Statistical Equilibrium (NSE) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Physical picture: 
"elementary" constituents 
and their interaction 

Interaction between the components 
internal structure: Pauli principle Quantum statistical (QS) approach, 

quasiparticle concept, virial expansion 
“excluded volume” 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

medium effects 

bound state formation 



Effective wave equation  
for the deuteron in matter 
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BEC-BCS crossover: 
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Add self-energy 
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In-medium two-particle wave equation in mean-field approximation 



Shift of the deuteron bound state energy 

G.R., Nucl. Phys. A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (deuteron, alpha,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number  
excited states, continuum correlations 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



Deuteron-like scattering phase shifts 
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G. R., J. Phys.: Conf. Series 569, 012031 (2014) 
Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654] 

deuteron bound state -2.2 MeV 

Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =

2
⇤3

h

bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2

⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
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e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
c (T ) =

1
⇡T

Z 1

0

dE e�E/T

⇢

�c(E)� 1
2

sin[2�c(E)]
�

. (34)

Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)



Two-particle correlations 

M. Schmidt, G.R., H. Schulz 
Ann. Phys. 202, 57 (1990) 

Generalized  
Beth-Uhlenbeck Approach 
for Hot Nuclear Matter 



Shift of Binding Energies of Light Clusters 

G.R., PRC 79, 014002 (2009) 
S. Typel et al.,  
PRC 81, 015803 (2010) 

Symmetric matter 



EoS at low densities from HIC 

chemical constants 
Yields of clusters from HIC: p, n, d, t, h, α  

inhomogeneous, 
non-equilibrium 

M. Hempel, K. Hagel, J. Natowitz, G. Ropke, S. Typel, Phys. Rec. C 91, 045805 (2015) 
QS, excluded volume 



χ-α scattering phase shifts 

C.J. Horowitz, A. Schwenk / Nuclear Physics A 776 (2006) 55–79  



Example: 5He 
Partial density 

virial coefficient nuclear stat. equ. 

generalized Beth-Uhlenbeck 
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B(5He)-B(4He)= - 0.735 MeV 





p well described, but d, 3He ? 



Cluster formation at LHC/CERN 

B. Doenigus, G.R., D. Blaschke, Phys. Rev. C 106, 044908 (2022) 

ALICE@LHC 

Excellent description 
Of data by the  
Statistical model 
(chemical equilibrium)  

T = 156 MeV 



Proton yields at LHC - ALICE 

B. Doenigus, G. R., D. Blaschke, Phys. Rev. C 106, 044908 (2022) 

Production of protons at 
chemical freeze-out temperature 
T = 156 MeV for sNN

1/2=2.76 TeV  

Primordial,  
Feed-down from resonances, 
Scattering phase shifts p-pi 



Deuteron yields at LHC - ALICE 

B. Doenigus, G. R., D. Blaschke, Phys. Rev. C 106, 044908 (2022) 

Production of deuterons at 
chemical freeze-out temperature 
T = 156 MeV for sNN

1/2=2.76 TeV  

“snowballs in the hell”: 
Argand plots, p wave 

Primordial,  
continuum correlations, 
scattering phase shifts d-pi 



Freeze-out at heavy ion collisions 

D. Blaschke, G R., Y. Ivanov, M. Kozhenikova, S. Liebig, SQM 2019, Springer Proc. Phys. 250, 183 (2020) 



Challenges 

•  cluster formation in expanding hot and dense matter: nonequilibium 
processes, freeze-out concept contains quantum correlations, feed-
down, reaction network, vs. kinetic equations and coalescence 
model, quantum correlation should be included, evolution of the 
spectral function. 

•  Improving the ideal mixture of bound states (nuclear statistical 
equilibrium), account of interactions, quasiparticle concept,  weakly 
bound clusters and resonances, correlations in the continuum. 

•  formation of quantum condensates, finite systems; transport 
properties in dense matter, quark substructure. 

 



Thanks 
to D. Blaschke, B. Doenigus, A. Sedrakian, P. Schuck,  

S. Typel, H. Wolter 
for collaboration 

 
      to you 

for attention          
                                                                              D.G. 



Scattering phase shifts in matter 



Total phase shift for neutron matter (n-n) 
and symmetric matter (n-n + p-n)  

C.J. Horowitz, A. Schwenk / Nuclear Physics A 776 (2006) 55–79  



Loosely bound objects 

•  π - d scattering phase shifts? 

•  Spectral function of the nucleons forming the deuteron 

•  Sum of the two shifts caused by the interaction  
    with the π system 
 
•  Vertex corrections? 

•  Similar for 3He etc.? 



How to form clusters? 

Nuclear reactions, nonequilibrium process 

 Stanisław Mrówczyński  

resonances, 4Li ? 



Quantum statistical approach 
The total density as well as the DoS are given by the spectral function A, 

which is related to the Green function and the self-energy as  



Quantum statistical approach 
The total density as well as the DoS are given by the spectral function A, 

A cluster decomposition for the self-energy is possible so that a quasiparticle  
(free) contribution can be separated,  

which is related to the Green function and the self-energy as  



Quantum statistical approach 
The total density as well as the DoS are given by the spectral function A, 

A cluster decomposition for the self-energy is possible so that a quasiparticle  
(free) contribution can be separated,  

We obtain the generalized Beth-Uhlenbeck formula (quasiparticles)  
after calculating the self-energy in ladder approximation.  
Bound states appear as solution of an in-medium Schrödinger equation.  

which is related to the Green function and the self-energy as  



Quantum statistical approach 
The total density as well as the DoS are given by the spectral function A, 

A cluster decomposition for the self-energy is possible so that a quasiparticle  
(free) contribution can be separated,  

We obtain the generalized Beth-Uhlenbeck formula (quasiparticles) 

In-medium Schrödinger equation for Ei,γ,ν(T,µ),  δi,γ(T,µ), channel (spin…) γ 



Cluster decomposition 
 of the self-energy 

T-matrices: bound states, scattering states 
Including clusters like new components 
chemical picture, 
mass action law, nuclear statistical equilibrium (NSE) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
of quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.Eq. 

Generalized Beth-Uhlenbeck formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium: 
phase space occupation by all bound states 
in-medium correlations, quantum condensates 



Mott effect, in-medium cross section  

C. Kuhrts, PRC 63,034605 (2001) 


