Study of Hyperon Nucleon Interactions with CLAS

Daniel Watts

(CLAS collaboration)

UNIVERSITY of Vork

Outline

- Motivation
- Thomas Jefferson Laboratory
 - The CEBAF Large Acceptance Spectrometer (CLAS)
- Recent results published and in progress
 - The published results on Ap scattering
 - Current status of Σp , Λd scattering analyses
 - Polarisation observables in FSI a new window on YN interactions?
 - KLF@JLAB a next generation tagged hyperon beam facility
- Summary and Outlook

Why study the Hyperon Nucleon Interaction?

• An improved understanding Y-N interaction potentials would impact a range of fields:

- Better constraints on composition of neutron stars
- Better understanding of hypernuclear structure and hyperon matter
- A more unified picture of the SU(3) baryon-baryon interaction - challenging theories of the strong interaction

Neutron stars

• Compact supernova remnants

Radius ~10km Surface velocity up to ~1/4c

- Composition debated
- Terrestrial constraints -> hadron/nuclear

Ribes et al 2019 ApJ 883 168

The paucity of Λ -p data

Total of <1300 observed $\Lambda p \rightarrow \Lambda p$

Λ source	Detector	p_{Λ}	$N_{\Lambda p \to \Lambda p}$
$\pi^- p \to \Lambda K^0$	$LH_2 BC$	0.5-1.0	4
$\pi^- p \to \Lambda K^0$	$LH_2 BC$	0.4 - 1.0	14
$K^-N \to \Lambda \pi$	Propane BC	0.3-1.5	26
$K^-N \to \Lambda \pi$	Freon BC	0.5 - 1.2	86
$K^-A \to \Lambda X$	Heavy Liquid BC	0.15-0.4	11
$K^- p \to \Lambda X$	$LH_2 BC$	0.12-0.4	75
$nA \to \Lambda X$	Propane BC	0.9-4.7	12
$K^- p \to \Lambda X$	$LH_2 BC$	1.0 - 5.0	68
$K^- p \to \Lambda X$	$LH_2 BC$	0.1-0.3	378
$K^- p \to \Lambda X$	$LH_2 BC$	0.1-0.3	224
K^- Pt $\rightarrow \Lambda X$	$LH_2 BC$	0.3-1.5	175
p Pt $\rightarrow \Lambda X$	$LH_2 BC$	1.0 - 17.0	109
$pCu \rightarrow \Lambda X$	LH ₂ BC	0.5–24.0	71

$$a({}^{1}S_{0}) = -0.7 - -2.6 \text{ fm}$$

 $a({}^{3}S_{1}) = -1.7 - -2.15 \text{ fm}$

Free-space scattering data complementary to Λ -Hypernuclear studies where medium mod/many-body effects convoluted with basic $\Lambda-N$

The hyperon puzzle

- Hyperons are predicted to appear in the core of NS at ρ ~ 2 3 ρ_0
- Hyperons soften the EoS → Reduction on maximum NS mass
- Observation of NS with M_G>2M_s is incompatible with such soft EoS
 → Hyperon Puzzle
- Better experimental constraint on the Y-N (and in-medium behaviour) is crucial ..

Some Proposed solutions of the hyperon puzzle

• Hyperon Puzzle: Possible solutions

YY and YN forces YNN and YYN three body forces

- Experimental data are crucial to place constraints
- Y-N interaction in free space -> bedrock for exploring higher order effects in medium
- Motivates our current study study using secondary hyperon beams (seeded by gamma beams)

D. Lonardoni, Phys. Rev. Lett. 114, 092301 (2015)
J. Haidenbauer et al., Eur. Phys. J. A 53, 121 (2017)
I. Vidana, Proc. R. Soc. A 474, 20180145 (2018)

CLAS6@JLAB

6-GeV era : 1995-2012

- C.W. electron beam
- Polarized Source: P_e ~ 86%
- Beam energies up to $E_0 = 6 \text{ GeV}$
- Beam Current up to 200 μA

Hall-B at Jefferson Lab

- Hyperon analysis uses "g12" data set
- Photon energies 1.2 5.4 GeV
- Cryogenic liquid H/D targets 40cm long 4cm diameter

Ap Elastic Scattering

https://doi.org/10.1103/PhysRevLett.127.272303

Improved Λp Elastic Scattering Cross Sections between 0.9 and 2.0 GeV/c as a Main Ingredient of the Neutron Star Equation of State

J. Rowley,³⁵ N. Compton,³⁵ C. Djalali,³⁵ K. Hicks,³⁵ J. Price,² N. Zachariou,⁴⁷ K. P. Adhikari,³⁶ W. R. Armstrong,¹

Ap Elastic Scattering

- Cross section determination challenging
- Need careful account of detector acceptance, efficiency

(see paper for details)

NLO chiral EFT(Haidenbauer *Eur. Phys. J. A* 56, 91 (2020))
 Haidenbauer, U.-G. Meißner, Phys. Rev. C 72, 044005 (2005)
 Rijken, Stoks, Yamamoto, Phys. Rev. C 59, 21 (1999).

Ap Elastic Scattering - background removal

- Background contribution $p(\Lambda)p \rightarrow pp$
- Can be isolated in CLAS
- Difficult for previous bubble chamber data (systematic at higher momenta?)

Systematic check – pp scattering

Systematic uncertainties - order 10%

Additional points at higher energies -- TBD

Work in progress - Sp Elastic Scattering

Work in progress: Ad elastic scattering

Polarisation observables in Hyperon Photoproduction

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \Sigma \cos 2\phi + \alpha \cos \theta_x (-P_{lin} O_x \sin 2\phi - P_{circ} C_x) - \alpha \cos \theta_y (-P_y + P_{lin} T \cos 2\phi) - \alpha \cos \theta_z (P_{lin} O_z \sin 2\phi + P_{circ} C_z) \}$$

Linearly polarized beam Circularly polarized beam

Λ Recoil Polarisation Self-analysing (α =0.75)

Polarisation Observables Λn

- Rescattering of hyperons in FSI -> powerful info
- YN potentials (NSC97F and NSC89) both give correct BE (e.g hypertriton) -> but degeneracy broken in polarisation observables!

Polarisation Observables Λn

Zachariou - York

Polarisation Observables Σp

Zachariou - York

Σp scattering - ratios

- Ratio broadly uniform around 2.5-2.75
- Analysis at early stage

KLF – A next generation hyperon facility

- K-Long facility Online '26
- Hall D of Jefferson Lab
- CPS >6 OOM in γ -luminosity
- 3 OOM higher hyperon rate
- Larger targets
- Access Ξ -N

Summary and outlook

- Ongoing programmes at JLAB are revealing the YN interaction with a new level of detail
- KLF presents a step change in the quality and intensity of tagged hyperon beams at Jefferson Lab

The team at USC, Ohio, CSU and York leading the works presented here

Muster Mark got 3 quarks – one strange and two light !!

I know Muster Mark got 3 quarks – but what flavour?

Thanks for listening !