WARPING UP REALITY

L. Fabbietti, EMMI Workshop, Bound states and particle interactions in the 21st century

$\Lambda\Lambda$ interactions from lattice QCD and H-Dibaryon Hartmut Wittig

hadron spectrum is computed starting from Correlators

$$\sum_{x,y} e^{i\mathbf{p}\cdot(\mathbf{y}-\mathbf{x})} \left\langle O_{\text{had}}(y) O_{\text{had}}^{\dagger}(x) \right\rangle = \sum_{n} w_{n}(\mathbf{p}) e^{-E_{n}(\mathbf{p})(y_{0}-x_{0})} \xrightarrow{(y_{0}-x_{0}) \to \infty}$$

- Operators O: baryon or Hexaquark operators
 - Note: Hexaquark operators lead to slower convergence to the ground state
- How to get the poles of the scattering amplitude?

Six lattice spacings: a = 0.099 - 0.039 fm, pion masses = 130 -420 MeV

 $w_1(\mathbf{p}) e^{-E_1(\mathbf{p})(y_0 - x_0)}$

Remarks on H-dibaryon and update on $\Lambda {\rm NN}$ content of V_Λ Avraham Gal

ELUSIVE Dibaron

- No direct signal yet
- Femtoscopy studies constrain $\Lambda\Lambda$ scattering lenght
- Direct decay searches dont show any signal but did not explore the full phase space with sufficient precision
- Belle and Babara ruled out BS (Y(2S, 3S) decays above the $\Lambda p\pi^-$ and below Λn
- Double- Λ hypernuclei constrain the upper limit of the BE = 7 MeV

Both Gal and Wittig consider the hypothesis of the dark-matter Hexaquark candidate as irrealistic (too large binding energy needed ~360

VLambda

- Starting point: fitting hypernuclei binding energies
- WS potential -> Depth of 30 MeV

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

Remarks on H-dibaryon and update on $\Lambda {\rm NN}$ content of V_{Λ} a. ${\rm Gal}$

VLambda

- Most 2-body YN models are overbinding !
- NSC and ESC DL ~-40 MeV
- xEDT NLO19 (600) : -32.6 MeV
- xEDT N2LO23 : -33 -38 MeV !!!
- -> Necessity of the 3-body repulsive force

Proposed solution: WRW Potential

$$\Lambda N \Rightarrow V_{\Lambda}^{(2)}(\rho) = -\frac{4\pi}{2\mu_{\Lambda}} b_{0}^{\text{lab}}(\rho) \rho \rho^{4/3}$$

$$b_{0}^{\text{lab}}(\rho) = \frac{b_{0}^{\text{lab}}}{1 + \frac{3k_{F}}{2\pi} b_{0}^{\text{lab}}} \qquad b_{0}^{\text{lab}} = \left(1 + \frac{A - 1}{A} \frac{\mu_{\Lambda}}{m_{N}}\right) b_{0}$$

for Pauli correlations, with $k_F = (3\pi^2 \rho/2)^{1/3}$.

$$\Lambda NN \Rightarrow V_{\Lambda}^{(3)}(\rho) = +\frac{4\pi}{2\mu_{\Lambda}} \left(1 + \frac{A-2}{A} \frac{\mu_{\Lambda}}{2m_{N}}\right) B_{0} \frac{\rho^{2}}{\rho_{0}}$$

UPDATE: Friedman-Gal, arXiv:2306.06973

$$(\rho_{\rm sym} + \rho_{\rm exc})^2 \rightarrow (\rho_{\rm sym}^2 + \rho_{\rm exc}^2).$$

Searching for the possible $\Lambda {\rm nn}$ resonance at JLAB Liguang Tang

▶ Production: ${}^{3}H(e, e'K^{+})(\Lambda nn)$ reaction.

Calibration

+ semi-exclusive analysis to evaluate the contamination coming Counts / 1.5 MeV

HRS path-length: 26 meters L-HRS: Scattered electrons (e') R-HRS: Reaction kaons (K⁺) Beam Energy: 4.319 GeV Cylindrical gas target: 25 cm

RESULTS – *Ann* **Spectrum**

Searching for the possible Λ nn resonance at JLAB **Liguang Tang**

NOT CONCLUSIVE, NO SIGNIFICANCE -> New experiment with pion spectrometer

Thermodynamics of quark matterwith multi-quark clusters

David Blaschke

 Phase transiation could also solve Berlin wall problem of nuclear EoS

- Tool: unified approach that consider also nuclei and correlations •-> hadron and cluster composition as a function of the thermodynamical potential Approach that fulfills also confinment and chiral symmetry restoration

Idea: look for a phase transition at large densities and 'low' temperature by computing EoS for Neutron star and NS mergers

- Possible frequency signal for phase transition in post-mergers kHz regime for NS merger
- Or Supernova explosion of 50 solar masses star

Thermodynamics of quark matterwith multi-quark clusters

David Blaschke

Current status of the comparison to Lattice QCD

Light Clusters in hot, dense matter

Gerd Röpke

- Cluster formation in dense matter, as non equilibrium statistical ensamble
- When and where are those cluster produced ?
- Formalism that includes interactions in the spectral functions of particles
- Pauli Blocking in medium
- Bound states are included as well

Test: proton and deuterons yields as a function of the system density

Money Plots

Hyperon-Nucleon scattering experiment at JPARC

Kojii Miwa (JPARC E40, E86, E90)

Derived phase shift suggest that the ³S₁ interaction is moderately repulsive.

Comparison with HAL QCD Σ N potential

H. Nemura et al., EPJ Web of Conf., 175, 05030 (2018)

Hyperon-Nucleon scattering experiment at JPARC

Kojii Miwa (JPARC E40, E86, E90)

1) $\Sigma^+ - p$ scattering

But, the interactions are not uniquely determined yet.

2) $\Lambda - p$ interaction in medium (access large density with large momentum)

• Driven by $\Sigma N - \Lambda N$ coupling

- Quark model understimates Data
- Nijmegen model agrees withData
- NNLO anchored to new data
- Lattice compatible with new data

Hyperon-Nucleon scattering experiment at JPARC Kojii Miwa (JPARC E40, E86, E90)

2) $\Lambda - p$ interaction in medium (access large density with large momentum)

Recent Femtoscopy Measurements from STAR Experiment

Neha Shah (STAR)

Ę, о́ У p-E sideband background C_{SL}(k*)=C₄₀₄ 0.8 K. Mi, APS2021 STAR Preliminary 0.6 0 0.05 0.1 0.15 0.2 0.25 0.3 k*(GeV/c)

QCD collaboration are consistent with the data

Recent Femtoscopy Measurements from STAR Experiment

Neha Shah (STAR)

- Lednicky calculations (point-like particles) (not shown here) can describe the data
 'accidentally' with large radii
- No two-body potential can describe the p-d interaction
- CF calculation using SMASH event generator with afterburner with and without coalescence
- With coalescence fits better
- For d-d larger radii are obtained and also the coalescence fits better.

Femtoscopy and three-body systems Laura Serksnyte

- p-d correlation function provides access to the three-body p-(p-n) system
- Three-body femtoscopy allows to study three-hadron systems: \bullet
 - $p-p-\Lambda$: compatible with two-body correlations only \bullet
 - p-p-p: 6.7 σ deviation from null hypothesis related to the antisymmetrisation of the wave function
 - p-p-K⁺⁽⁻⁾: compatible with two-body interactions only \bullet

Up to two orders of magnitude larger statistics expected in Run3!

 $c_3(Q_3)$

ALICE

0.2

pp $\sqrt{s} = 13 \text{ TeV}$

0.5

0.6

Femtoscopy and three-body systems Laura Serksnyte

- p-d correlation function provides access to the three-body p-(p-n) system
- Three-body femtoscopy allows to study three-hadron systems:
 - $p-p-\Lambda$: compatible with two-body correlations only
 - p-p-p: 6.7σ deviation from null hypothesis related to the antisymmetrisation of the wave function
 - p-p-K⁺⁽⁻⁾: compatible with two-body interactions only

Up to two orders of magnitude larger statistics expected in Run3!

Antikaon absorption in nuclear medium

Jaroslava Obertova

• Microscopic model for Multi-nucleon processes K-NN instead of a phenomelogical potential $V_{K-multiN}^{phen} = -4\pi B(\frac{1}{K})$

- Based on a meson-exchange approach
- P and BCN chiral KN amplitudes employed
- Pauli correlations in the medium for KN amplitudes considered
- real part of the KNN optical potential evaluated as well
- KN optical potential derived within the same approach

Antikaon absorption in nuclear medium

Jaroslava Obertova

- Microscopic model for Multi-nucleon processes K-NN instead of a phenomelogical potential
 - Result nr 1 : Recently measured ratio R. Del Grande et al., EPJ C79 (2019) 190

 $R = \frac{\mathrm{BR}(K^- pp \to \Lambda p)}{\mathrm{BR}(K^- pp \to \Sigma^0 p)} = 0.7 \pm 0.2 (\mathrm{stat.})^{+0.2}_{-0.3} (\mathrm{syst.})$

Result nr 2 :

	K ⁻ N	$K^-N + K^-NN$
Pauli	825	565
WRW	2378	1123

Result of the fit to 65 kaonic atoms data

Production of (Hyper)Nuclei within a Coalescence Approach

Time to see if you followed the talks https://pingo.coactum.de/844101