DANIEL GAZDA

Nuclear Physics Institute Řež/Prague

Energy levels light nuclei sensitive YN -> but model dependencies NN/NNN interactions (up to 0.36 MeV 5He HN)

Can we optimize YN forces from ab-initio calcs. of large # model evaluations ? Computational cost too high

Eigenvector continuation method – when Hamiltionian is a smooth fn. of a control variable the Eigen vectors are too! -> Confined to a low dimensional sub-space , can be linearised $H = H_0 + C_{27}V_{27} + C_{10}V_{10} + C_{27}V_{27} + C_{10}V_{10} + C_{27}V_{27} + C_{10}V_{10} + C_{27}V_{27} + C_{27}V_{$

 $H = H_0 + C_{27}V_{27} + C_{10*}V_{10*} + C_{10}V_{10} + C_{8a}V_{8a} + C_{8s}V_{8s}$, where C_is are the 5 independent $SU_f(3)$ LECs and H_0 contains the kinetic energy, NN+NNN interactions, and hypernuclear meson-exchange and Coulomb interactions

Select 1,2, 4 exact NCSM eigen vectors to construct emulators

Accurate and fast emulation of ab-initio NCSM (but extrapolation to larger space of N,hbarω necessary – sample 5-D space of LECs)

C₂₇ -> most of variation of BE in hypertriton – excited states HN bring in other constants

Emulator method - agreement excited states (and HT) through varying LOYN LECS

Lattice Monte Carlo Simulation

with two Impurity worldlines

Fabian Hildenbrand, IAS-4 & IKP-3, Forschungszentrum Jülich, Germany

- Extend Lattice calcs from nuclear regime (up to A=40) in 3rd dimension (cascade LL hypernuclei)
- Impurity Monte Carlo (hyperon is the impurity) calculate BE, radii, ...
- Apply transfer matrix on trial state in time steps obtain lowest ES of Hamiltonian
- Auxillary fields handle many particles replace NN with N-AF (parallel computing)
- Impurities AFMC does not converge easily (extrapolation..?) -> treat impurity as a worldline on AF
- Two hyperons WL-WL interaction WL-Background contact terms a la ChEFT, WL filtering


```
(D. Frame, T. A. Lähde, D. Lee, U.-G. Meißner)
```


JÜLICH FORSCHUNGSZENTRUM

⁶Li

го

HypHI and WASA-FRS experiments @ GSI

- Extend observation hypernuclei to drip lines
- Coalescence of Λ ,.. from hot region in n spectator fragment Hypernuclei in flight – boosted γ ~3 -> outside target region.
- HYPHI phase 0 CS and multiplicities, inverse temp studies
- WASA-FRS data in 2022 mom resolution fragments, RI beam

Short lifetime of ${}^{3}{}_{\Lambda}H$:

• Our published value : 183 ⁺⁴³-32 ps [C. Rappold et al., Nucl. Phys. A 913 (2013) 170]

 $au = 181^{+30}_{-24} \pm 25 \text{ps}$

 $\tau = 190^{+47}_{-35}$

 Plus other recent measurements : Combined lifetime analysis excludes all current models of ³^AH
 [C. Rappold et al., Phys. Lett. B 728, 543 (2014)]

Studies of Hypernuclei with HI-beams, Nuclear Emulsions and Machine Learning

R. Saito (Riken) WASA FRS, Emulsion-ML

Jie Zhou et al., AI Open 1 (2020) 57-81

Acquired data for S447 (hypernuclei)

Beam	Fragment at S4	Amount	Time	Accepted trigger rate	
⁶ Li beam	³ He	3.3 × 10 ⁸	40.9 hours	2600 Hz	
	⁴ He	0.9 × 10 ⁸	40.0 hours	1800 11-	
	deuteron	1.8 × 10 ⁸	43.9 hours	TOUU HZ	
	proton (mid- rapidity)	5.3 × 10 ⁶	3.2 hours	680 Hz	
¹² C beam	³ He	1.0 × 10 ⁸		2400 11-	
	⁹ C	2.4 × 10 ⁵	13.5 nours 2400 Hz	2400 HZ	

Pytorch geometric MC ML, Improve momentum resolution from 9% (Kalman F) to 6%;
98% efficiency for pi-, reduced training times-

Nuclear emulsion – best spatial resolution of any detector

HT training data? Binarised tracks MC, background from real data -> GAN networks – indistinguishable

Detection – Mask R-CNN. Trained automatically (know the good events) – first HT in emulsion discovered! (Nature paper) – 250x stats to come, Double HN, ..

Antihyperons in Nuclei (with PANDA)

Michael Papenbrock

p _{beam} (GeV/c)	Reaction	<i>σ</i> (μb)	ɛ (%)	Rate (s ⁻¹) @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events / day
1.64	$\bar{p}p ightarrow \overline{\Lambda}\Lambda$	64.0	16.0	44	114	$3.8\cdot10^{6}$
1.77	$\bar{p}p ightarrow \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4	>11**	207000
6.0	$ar{p}p o ar{\Sigma}^0 \Lambda$	20	6.1	5.0	21	432000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 1	8.2	0.3	274	260000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 0.3	7.9	0.1	65	86000

 $\vec{p}_{y} = \sqrt{p_{y}^{2} - 2U_{y}m_{y}}$ $\vec{p}_{y} = -\vec{p}_{y}$

Neutron skin across isotopic chains (double ratio)

Momentum asymmetries (transverse, long) -> Effective antihyperon optical pot.

Hyperatoms and hypernuclei

New apparatus upstream Cascade HN

 $\Lambda\Lambda$ hypernuclei from cascade- capture

Active Boron target

Four body force in Pionless Effective Field Theory

Busch formula – extract free space scattering parameters a_0 and r_{eff} from bound state energies

Mirko Bagnarol

Hebrew University of Jerusalem Racah Institute of Physics

NLO – mom dependent 2-body terms, three counterterms and a 4-body force (latter necessary and sufficient for renormalization)

Model has 6 parameters fixed to few body observables

$$k \cot \delta_{0} = -2\sqrt{\mu\omega} \frac{\Gamma\left(\frac{3}{4} - \frac{E}{2\hbar c\omega}\right)}{\Gamma\left(\frac{1}{4} - \frac{E}{2\hbar c\omega}\right)}$$

Basis states:

Single - correlated gaussian with orb, spin, Isospin part + Ad-hoc designed states that capture 4He core

Effective Field Theory for Light Hypernuclei Nir Barnea EMMI Workshop, Trieste

July 3-6, 2023

	Two-nucleon force	Three-nucleon force	Four-nucleon force
Qº	XH	_	—
Q ²	X4441	—	_
Q3	村村	HH HX XK	_
Q4	X 4 4 4	work in progress	H41 H41 -

5BF – maybe for hyperons !

Constraints: ΛN - femtoscopy $\Lambda \Lambda$ – lattice QCD

Universality – also applies to atomic systems

Charge symmetry breaking ³H <-> ³He diff large (25%)

 Λ, Σ mixing?

ChEFT – biggest effect from contact interactions. Spin singlet> Spin triplet

BEFT reproduces observations !

Hyperon-nucleon interaction and light hypernuclei

Johann Haidenbauer

IAS, Forschungszentrum Jülich, Germany

ChEFT up to NNLO

Recent imrovements in quality of data hyperon nucleon scattering (CLAS, J-PARC) Mom correlation functions (STAR, HADES ALICE..) LatticeQCD, ab inito effective field theories, ..

N2LO – Improvements in description P wave, higher waves in NN scattering

Full determination of all P-wave LECs – more channels, pol observables..

Approaching a SU(3) Energy Density Functional

Horst Lenske Institut für Theoretische Physik, JLU Giessen

SU(3) relations for covariant octet EDF

Lagrangian for hypernuclear matter

3 sets of 3 fundamental coupling constants

$$\mathcal{L}_{int}^{\mathcal{P}} = -\sqrt{2} \left\{ g_D \left[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_8 \right]_D + g_F \left[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_8 \right]_F \right\} - g_S \frac{1}{\sqrt{3}} \left[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_1 \right]_S$$

Inherit SU(3) symmetry, Sym breaking from use of physical masses, Coupling Consts

In-medium couplings needed : Some known and imposing some as zero Mixing angle

Ccovariant SU(3) Density functional can be constructed - evaluated in a mean field approximation

 $\Lambda\text{-}\Sigma\,$ Mixing inAsymmetric Nuclear Matter $\,$ Induced by the Static Isovector Mean-Field

Simulating YYN/YYY Repulsion Exploratory SU(3)-EDF Study of a Neutron Star

