

Skyrme-Hartree-Fock Approach for Hypernuclei

E. Hiyama, RIKEN Wako, Japan X.-R. Zhou, ECNU Shanghai, China H.-J. Schulze, INFN Catania, Italy

- Λ hypernuclei (Data)
- Extended Skyrme-Hartree-Fock (SHF) approach
- Fit ΛN force parameters, Results
- Deformation and s.o. splitting
- E hypernuclei
- Kaonic nuclei

PRC 62, 064308 (2000) PRC 76, 034312 (2007) PTP 123, 569 (2010) PRC 90, 047301 (2014) PRC 95, 024323 (2022) PRC 107, 044317 (2023) Hypernuclei: Single, Double, Multi-Lambda:

- \land hyperons (uds, M_{\land} =1116 MeV) bound by a nucleus Weak decay: $\land \rightarrow N + \pi$ etc. ($c\tau \approx 8$ cm)
- Created by (π⁺, K⁺), (K⁻, π⁻), (e, e'K⁺) reactions (BNL, CERN, JLAB, KEK, LNF, GSI, J-PARC, ...)
- Experimentally known (heavy) A hypernuclei:
 Single-lambda: ...,¹³_AC, ¹⁶_AO, ²⁸_ASi, ⁴⁰_ACa, ⁸⁹_AY, ¹³⁹_ALa, ²⁰⁸_APb,...
 Double-lambda: ⁶_{AA}He, ^{10,11,12}_{AA}Be, ¹³_{AA}B (8 events !)
 - Multi-lambda: None !
- Observables:

• Λ binding (removal) energy: $B_{\Lambda} = E(^{A-1}Z) - E(^{A}_{\Lambda}Z)$ • Single-particle levels: e_{q}^{i} ($q = n, p, \Lambda$; i = s, p, d, ...)

Data (light ∧ hypernuclei):

Synopsis of the experimental values of B_{Λ} for $A \le 16$ hypernuclei. Column 1: hypernucleus; column 2: emulsions; column 3: KEK-SKS; column 4: revised KEK-SKS; column 5: DA Φ NE-FINUDA; column 6: electroproduction. References are in parentheses; [t.w.] stands for this work. In columns 2–6 the first error is statistical, the second one is systematic; in columns 5 and 6 the error quoted for results from Ref. [21] and, respectively, Ref. [15] is total.

	Emulsions (MeV)	(π^+, K^+) (MeV)	(π^+, K^+) (MeV)	(K_{stop}, π^{-}) (MeV)	$(e, e'K^+)$ (MeV)
		KEK-SKS [5]	KEK-SKS revised [t.w.]	DAQNE-FINUDA	JLab, MaMi
$^{3}_{\Lambda}$ H	$0.13 \pm 0.05 \pm 0.04$ [1,2]				
$^{4}_{\Lambda}$ H	$2.04 \pm 0.04 \pm 0.04$ [1,2]				$2.157 \pm 0.005 \pm 0.077$ [16]
$^{4}_{\Lambda}$ He	$2.39 \pm 0.03 \pm 0.04$ [1,2]				
⁵ _A He	$3.12 \pm 0.02 \pm 0.04$ [1,2]				
$^{6}_{\Lambda}$ H				4.0 ± 1.1 [20,28]	
$^{6}_{\Lambda}$ He	4.25 ± 0.10 [1], $4.18 \pm 0.10 \pm 0.04$ [2]				
$^{7}_{\Lambda}$ He					$5.55 \pm 0.10 \pm 0.11$ [11]
⁷ ∕Li	$5.58 \pm 0.03 \pm 0.04$ [1,2]	$5.22 \pm 0.08 \pm 0.36$	$5.82 \pm 0.08 \pm 0.08$	$5.85 \pm 0.13 \pm 0.10$ [19], [t.w.], 5.8 ± 0.4 [21]	
$^{7}_{\Lambda}$ Li* [4]	$5.26 \pm 0.03 \pm 0.04$	$4.90 \pm 0.08 \pm 0.36$	$5.50 \pm 0.08 \pm 0.08$	$5.53 \pm 0.13 \pm 0.10, 5.48 \pm 0.40$	
$^{7}_{\Lambda}$ Be	$5.16 \pm 0.08 \pm 0.04$ [1,2]				
$^{8}_{\Lambda}$ He	$7.16 \pm 0.70 \pm 0.04$ [1,2]				
⁸ Li	$6.80 \pm 0.03 \pm 0.04$ [1,2]				
$^{8}_{\Lambda}$ Be	$6.84 \pm 0.05 \pm 0.04$ [1,2]				
⁹ _A Li	8.53 ± 0.15 [1], $8.51 \pm 0.12 \pm 0.04$ [2]				$8.36 \pm 0.08 \pm 0.08$ [12]
$^{9}_{\Lambda}$ Be	$6.71 \pm 0.04 \pm 0.04$ [1,2],	$5.99 \pm 0.07 \pm 0.36$	$6.59 \pm 0.07 \pm 0.08$	$6.30 \pm 0.10 \pm 0.10$ [19], [t.w.] 6.2 ± 0.4 [21]	
$^{9}_{\Lambda}$ B	7.88 ± 0.15 [1], $8.29 \pm 0.18 \pm 0.04$ [2]				
$^{10}_{\Lambda}$ Be	9.30±0.26 [1], 9.11±0.22±0.04 [2]				$8.60 \pm 0.07 \pm 0.16$ [13]
${}^{10}_{\Lambda}B$	8.89±0.12±0.04 [1,2]	$8.1 \pm 0.1 \pm 0.5$	$8.7 \pm 0.1 \pm 0.08$		
${}^{11}_{\Lambda}B$	$10.24 \pm 0.05 \pm 0.04$ [1,2]			$10.28 \pm 0.2 \pm 0.4$ [t.w.]	
${}^{12}_{\Lambda}B$	$11.37 \pm 0.06 \pm 0.04$ [1,2]				$11.524 \pm 0.019 \pm 0.013$ [14]
$^{12}_{\Lambda}C$	$10.76 \pm 0.19 \pm 0.04$ [2]	10.80 fixed		$11.57 \pm 0.04 \pm 0.10$ [19], [t.w.]	
				$10.94 \pm 0.06 \pm 0.50$ [18]	
$^{13}_{\Lambda}C$	11.22 ± 0.08 [1]	$11.38 \pm 0.05 \pm 0.36$	$11.98 \pm 0.05 \pm 0.08$	11.0 ± 0.4 [21]	
	$11.69 \pm 0.12 \pm 0.04$ [2]				
$^{14}_{\Lambda}C$	$12.17 \pm 0.33 \pm 0.04$ [2]				
$^{15}_{\Lambda}N$	$13.59 \pm 0.15 \pm 0.04$ [1,2]			$13.8 \pm 0.7 \pm 1.0$ [t.w.]	
$^{16}_{\Lambda}N$					13.76 ± 0.16 [15]
$^{16}_{\Lambda}O$		$12.42 \pm 0.05 \pm 0.36$	$13.02 \pm 0.05 \pm 0.08$	13.4±0.4 [21]	

167

Data (light ∧ hypernuclei):

Synopsis of the experimental values of B_{Λ} for $A \le 16$ hypernuclei. Column 1: hypernucleus; column 2: emulsions; column 3: KEK-SKS; column 4: revised KEK-SKS; column 5: DA Φ NE-FINUDA; column 6: electroproduction. References are in parentheses; [t.w.] stands for this work. In columns 2–6 the first error is statistical, the second one is systematic; in columns 5 and 6 the error quoted for results from Ref. [21] and, respectively, Ref. [15] is total.

	Emulsions (MeV)	(π^+, K^+) (MeV)	(π^+, K^+) (MeV)	(K_{stop}^{-}, π^{-}) (MeV)	$(e, e'K^+)$ (MeV)
2		NEN-3N3 [3]	KEK-SKS IEVISEU [I.W.]	ΔΑΨΝΕ-ΓΙΝΟΔΑ	JLab, Iviaivii
ЪН	$0.13 \pm 0.05 \pm 0.04$ [1,2]		+0.6 MeV		
$^{4}_{\Lambda}$ H	$2.04 \pm 0.04 \pm 0.04$ [1,2]				$2.157 \pm 0.005 \pm 0.077$ [16]
$^{4}_{\Delta}$ He	$2.39 \pm 0.03 \pm 0.04$ [1,2]				
⁵ _A He	$3.12 \pm 0.02 \pm 0.04$ [1,2]				
δH				4.0 ± 1.1 [20,28]	
o He ∆He	4.25 ± 0.10 [1], $4.18 \pm 0.10 \pm 0.04$ [2]				
$^{7}_{\Delta}$ He					$5.55 \pm 0.10 \pm 0.11$ [11]
$^{7}_{\Delta}$ Li	$5.58 \pm 0.03 \pm 0.04$ [1,2]	$5.22 \pm 0.08 \pm 0.36$	$5.82 \pm 0.08 \pm 0.08$	$5.85 \pm 0.13 \pm 0.10$ [19], [t.w.], 5.8 ± 0.4 [21]	
$^{7}_{\Lambda}$ Li* [4]	$5.26 \pm 0.03 \pm 0.04$	$4.90 \pm 0.08 \pm 0.36$	$5.50 \pm 0.08 \pm 0.08$	$5.53 \pm 0.13 \pm 0.10, 5.48 \pm 0.40$	
$^{7}_{\Lambda}$ Be	$5.16 \pm 0.08 \pm 0.04$ [1,2]				
$^{8}_{\Lambda}$ He	$7.16 \pm 0.70 \pm 0.04$ [1,2]				
⁸ Li	$6.80 \pm 0.03 \pm 0.04$ [1,2]				
⁸ Be	$6.84 \pm 0.05 \pm 0.04$ [1,2]				
⁹ Li	8.53±0.15 [1], 8.51±0.12±0.04 [2]				$8.36 \pm 0.08 \pm 0.08$ [12]
$^{9}_{\Lambda}$ Be	$6.71 \pm 0.04 \pm 0.04$ [1,2],	$5.99 \pm 0.07 \pm 0.36$	$6.59 \pm 0.07 \pm 0.08$	$6.30 \pm 0.10 \pm 0.10$ [19], [t.w.]	
9 D	7 88 + 0 15 [1] 8 20 + 0 18 + 0 04 [2]			0.2 ± 0.4 [21]	
Д Б 10 ра	7.88 ± 0.13 [1], $8.29 \pm 0.18 \pm 0.04$ [2]				8 60 1 0 07 1 0 16 [12]
	9.30 ± 0.26 [1], $9.11 \pm 0.22 \pm 0.04$ [2]	91101105	971011009		$8.00 \pm 0.07 \pm 0.16$ [15]
	$8.89 \pm 0.12 \pm 0.04$ [1,2]	$8.1 \pm 0.1 \pm 0.3$	$8.7 \pm 0.1 \pm 0.08$	$10.02 \pm 0.2 \pm 0.4$ [t m]	
	$10.24 \pm 0.05 \pm 0.04$ [1,2]			$10.28 \pm 0.2 \pm 0.4$ [t.w.]	11 524 + 0.010 + 0.012 51 41
12 C	$11.37 \pm 0.06 \pm 0.04$ [1,2]	10.00 C 1			$11.524 \pm 0.019 \pm 0.013$ [14]
$\tilde{\Lambda}^{C}$	$10.76 \pm 0.19 \pm 0.04$ [2]	10.80 fixed		$11.5 \pm 0.04 \pm 0.10 [19], [t.w.]$	
13 a		11.00 1.0.05 1.0.00	11.00 0.05 0.00	$10.94 \pm 0.06 \pm 0.50$ [18]	
$^{13}\Lambda$ C	11.22 ± 0.08 [1]	$11.38 \pm 0.05 \pm 0.36$	$11.98 \pm 0.05 \pm 0.08$	11.0 ± 0.4 [21]	
14	$11.69 \pm 0.12 \pm 0.04$ [2]				
$^{14}_{\Lambda}C$	$12.17 \pm 0.33 \pm 0.04$ [2]				
$^{13}_{\Lambda}N$	$13.59 \pm 0.15 \pm 0.04$ [1,2]			$13.8 \pm 0.7 \pm 1.0$ [t.w.]	
^{10}N					13.76 ± 0.16 [15]
$\Lambda^{10}O$		$12.42 \pm 0.05 \pm 0.36$	$13.02 \pm 0.05 \pm 0.08$	13.4 ± 0.4 [21]	

167

Data (light A hypernuclei):

Synopsis of the experimental values of B_{Λ} for $A \le 16$ hypernuclei. Column 1: hypernucleus; column 2: emulsions; column 3: KEK-SKS; column 4: revised KEK-SKS; column 5: DA Φ NE-FINUDA; column 6: electroproduction. References are in parentheses; [t.w.] stands for this work. In columns 2–6 the first error is statistical, the second one is systematic; in columns 5 and 6 the error quoted for results from Ref. [21] and, respectively, Ref. [15] is total.

E

Emulsion Data (BNL stopped K^- , ~ 27000 events):

Experimental Λ separation energies, B_{Λ} from emulsion studies								
Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$	Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$			
		MeV			MeV			
$^{3}_{\Lambda}{\rm H}(1/2^{+})$	204	0.13 ± 0.05	$^{9}_{\Lambda}$ Li	8	8.50 ± 0.12			
$^4_{\Lambda}\mathrm{H}(0^+)$	155	2.04 ± 0.04	$^{9}_{\Lambda}\mathrm{Be}$	222	6.71 ± 0.04			
$^4_{\Lambda}{ m He}$	279	2.39 ± 0.03	$^{9}_{\Lambda}\mathrm{B}$	4	8.29 ± 0.18			
$^5_{\Lambda}{ m He}$	1784	3.12 ± 0.02	$^{10}_{\Lambda}\mathrm{Be}$	3	9.11 ± 0.22			
$^6_\Lambda { m He}$	31	4.18 ± 0.10	$^{10}_{\Lambda}\mathrm{B}$	10	8.89 ± 0.12			
$^{7}_{\Lambda}\mathrm{He}$	16	not averaged	$^{11}_{\Lambda}{ m B}(5/2^+)$	73	10.24 ± 0.05			
$^{7}_{\Lambda}\mathrm{Li}$	226	5.58 ± 0.03	$^{12}_{\Lambda}{ m B(1^{-})}$	87	11.37 ± 0.06			
$^{7}_{\Lambda}\mathrm{Be}$	35	5.16 ± 0.08	$^{12}_{\Lambda}\mathrm{C}$	6	10.80 ± 0.18			
$^{8}_{\Lambda}\mathrm{He}$	6	7.16 ± 0.70	$^{13}_{\Lambda}\mathrm{C}$	6	11.69 ± 0.12			
$^{8}_{\Lambda}\text{Li}(1^{-})$	787	6.80 ± 0.03	$^{14}_{\Lambda}\mathrm{C}$	3	12.17 ± 0.33			
$^{8}_{\Lambda}\mathrm{Be}$	68	6.84 ± 0.05	$^{15}_{\Lambda}{ m N}$	14	13.59 ± 0.15			
Jurič et al., NPB 52 1 (1973)								
Courtesy of J. Millener								

Caution: In some cases only few events

Emulsion Data (BNL stopped K^- , ~ 27000 events):

Experimental Λ separation energies, B_{Λ} from emulsion studies								
Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$	Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$			
		MeV			MeV			
$^{3}_{\Lambda}\text{H}(1/2^{+})$	204	0.13 ± 0.05	$^9_{\Lambda}$ Li	8	8.50 ± 0.12			
$^4_{\Lambda}\mathrm{H}(0^+)$	155	2.04 ± 0.04	$^9_{\Lambda}\mathrm{Be}$	222	6.71 ± 0.04			
$^4_{\Lambda}{ m He}$	279	2.39 ± 0.03	$^{9}_{\Lambda}\mathrm{B}$	4	8.29 ± 0.18			
$^5_\Lambda { m He}$	1784	3.12 ± 0.02	$^{10}_{\Lambda}\mathrm{Be}$	3	9.11 ± 0.22			
$^6_\Lambda { m He}$	31	4.18 ± 0.10	$^{10}_{\Lambda}\mathrm{B}$	10	8.89 ± 0.12			
$^{7}_{\Lambda}\mathrm{He}$	16	not averaged	$^{11}_{\Lambda}{ m B}(5/2^+)$	73	10.24 ± 0.05			
$^{7}_{\Lambda}\mathrm{Li}$	226	5.58 ± 0.03	$^{12}_{\Lambda}{ m B(1^{-})}$	87	11.37 ± 0.06			
$^{7}_{\Lambda}\mathrm{Be}$	35	5.16 ± 0.08	$^{12}_{\Lambda}\mathrm{C}$	6	10.80 ± 0.18	+0.6 MeV		
$^{8}_{\Lambda}\mathrm{He}$	6	7.16 ± 0.70	$^{13}_{\Lambda}\mathrm{C}$	6	11.69 ± 0.12			
$^{8}_{\Lambda}\text{Li}(1^{-})$	787	6.80 ± 0.03	$^{14}_{\Lambda}\mathrm{C}$	3	12.17 ± 0.33			
$^{8}_{\Lambda}\mathrm{Be}$	68	6.84 ± 0.05	$^{15}_{\Lambda}\mathrm{N}$	14	13.59 ± 0.15			
Jurič et al., NPB 52 1 (1973)								

Caution: In some cases only few events

Data (heavy Λ hypernuclei):

TABLE IV. B_{Λ} values from a variety of sources for Λ single-particle states.

Hypernucleus	s_{Λ}	p_{Λ}	d_{Λ}	f_{Λ}	g_{Λ}
			(π^+, K^+)		
²⁰⁸ _A Pb	26.9(8)	22.5(6)	17.4(7)	12.3(6)	7.2(6)
¹³⁹ La	25.1(12)	21.0(6)	14.9(6)	8.6(6)	2.1(6)
⁸⁹ _A Y	23.6(5)	17.7(6)	10.9(6)	3.7(6)	-3.8(10)
51V	21.5(6)	13.4(6)	5.1(6)		
²⁸ / _A Si	17.2(2)	7.6(2)	-1.0(5)		
16 16 0	13.0(2)	2.5(2)			
¹³ ₄ C	12.0(2)	1.1(2)			
$^{12}_{\Lambda}C$	11.36(20)	0.36(20)			
¹⁰ _A B	8.7(3)				
14			$(e, e'K^+)$		
${}^{52}_{\Lambda}V$	21.8(3)				
¹⁶ _A N	13.76(16)	2.84(18)			
$^{12}_{\Lambda}B$	11.52(2)	0.54(4)			
¹⁰ _A Be	8.55(13)				
⁷ _A He	5.55(15)				
21			Emulsion		
$^{13}_{\Lambda}C$	11.69(12)	0.8(3)			
$^{12}_{\Lambda}\text{B}$	11.37(6)				
$^{12}_{\Lambda}C$		0.14(5)			
⁸ Li	6.80(3)				
⁷ / _A Be	5.16(8)				
21			(K^-, π^-)		
$^{40}_{\Lambda}$ Ca		11.0(5)	1.0(5)		
$^{32}_{\Lambda}S$	17.5(5)	8.2(5)	-1.0(5)		

+0.6 MeV

Gal, Hungerford, Millener Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016

PTEP **2012**, 02B012

H. Tamura

Fig. 2. A hypernuclear chart as of 2012.

PTEP 2012, 02B012

H. Tamura

Fig. 2. Λ hypernuclear chart as of 2012.

PTEP 2012, 02B012

H. Tamura

PTEP 2012, 02B012

H. Tamura

Hypernuclei: Typical Example: ⁴⁰Ca:

Theoretical model:

• Skyrme-Hartree-Fock (SHF) Vautherin & Brink, PRC 5 626 (1972)

- Standard NN force: SIII, SGII, SkI4, SLy4, ...
- Optimize NA Skyrme force: **SLL4**, ...

Extended SHF Model for Hypernuclei:

- M. Rayet, Ann. Phys. 102 226 (1976); Nucl. Phys. A367 381 (1981) D. Vautherin, PRC 7 296 (1973)
- Total energy of the hypernucleus:

$$E = \int d^3 \boldsymbol{r} \, \boldsymbol{\epsilon}(\boldsymbol{r})$$

Energy density functional:

 $\epsilon = \epsilon_N[\tau_n, \tau_p, \rho_n, \rho_p, J_n, J_p] + \epsilon_{\Lambda}[\tau_{\Lambda}, \rho_{\Lambda}, \rho_N]$ Local densities:

$$\rho_q = \sum_{i=1}^{N_q} |\phi_q^i|^2, \quad \tau_q = \sum_{i=1}^{N_q} |\nabla \phi_q^i|^2, \quad J_q = \sum_{i=1}^{N_q} \phi_q^{i^*} (\nabla \phi_q^i \times \boldsymbol{\sigma})/i$$

i: occupied states, N_q : number of particles $q = n, p, \Lambda$
2D model: quadrupole constraint: $\beta_2 = \sqrt{\frac{\pi}{5} \frac{\langle 2z^2 - r^2 \rangle}{\langle z^2 + r^2 \rangle}}$ fixed

• Nucleonic part: standard Skyrme functional:

$$\epsilon_{N} = \frac{1}{2m_{N}} \tau_{N} + \left[b_{0}\rho_{N}^{2} - d_{0}(\rho_{n}^{2} + \rho_{p}^{2}) \right] / 2 + b_{1}\rho_{N}\tau_{N} - d_{1}(\rho_{n}\tau_{n} + \rho_{p}\tau_{p}) + d_{1}(J_{n}^{2} + J_{p}^{2}) / 2 - \left[b_{2}\rho_{N}\Delta\rho_{N} - d_{2}(\rho_{n}\Delta\rho_{n} + \rho_{p}\Delta\rho_{p}) \right] / 2 + \left[b_{3}\rho_{N}^{2} - d_{3}(\rho_{n}^{2} + \rho_{p}^{2}) \right] \rho_{N}^{\gamma} / 3 - b_{4}\rho_{N}\nabla \cdot J_{N} - d_{4}(\rho_{n}\nabla \cdot J_{n} + \rho_{p}\nabla \cdot J_{p}) + \epsilon_{\text{Coul.}}$$

• SHF Schrödinger equation:

$$\left[-\nabla \cdot \frac{1}{2m_q^*(\boldsymbol{r})}\nabla + \boldsymbol{V}_q(\boldsymbol{r}) - i\nabla \boldsymbol{W}_q(\boldsymbol{r}) \cdot (\nabla \times \boldsymbol{\sigma})\right]\phi_q^i(\boldsymbol{r}) = -e_q^i\phi_q^i(\boldsymbol{r})$$

• SHF mean fields:

$$V_N = V_N^{\text{SHF}} + \frac{\partial \epsilon_{\Lambda}}{\partial \rho_N}$$
, $V_{\Lambda} = \frac{\partial \epsilon_{\Lambda}}{\partial \rho_{\Lambda}}$, $W_{\Lambda} = 0$

Empirical Skyrme NA Force:

M. Rayet, Ann.Phys. 102, 226 (1976); Nucl.Phys. A367, 381 (1981)

$$\epsilon_{\Lambda} = \frac{\tau_{\Lambda}}{2m_{\Lambda}} + a_{0}\rho_{\Lambda}\rho_{N} + a_{3}\rho_{\Lambda}\rho_{N}^{1+\alpha} + a_{1}(\rho_{\Lambda}\tau_{N} + \rho_{N}\tau_{\Lambda}) - a_{2}(\rho_{\Lambda}\Delta\rho_{N} + \rho_{N}\Delta\rho_{\Lambda})/2 - a_{4}(\rho_{\Lambda}\nabla \cdot J_{N} + \rho_{N}\nabla \cdot J_{\Lambda}) + c_{0}\rho_{\Lambda}^{2} + c_{3}\rho_{\Lambda}^{2}\rho_{N}^{\gamma} + c_{1}\rho_{\Lambda}\tau_{\Lambda} - c_{2}\rho_{\Lambda}\Delta\rho_{\Lambda} + \dots Parameters a_{0}, \dots, a_{4}, \alpha, c_{0}, \dots, c_{3}, \gamma (Together with SLy4 NN force) We use a_{0}, a_{1}, a_{2}, a_{3}, \alpha = 1 Effective mass:$$

$$\frac{1}{2m_{\Lambda}^*} = \frac{1}{2m_{\Lambda}} + \frac{a_1\rho_N + c_1\rho_{\Lambda}}{2m_{\Lambda}}$$

Fit to Hypernuclear Data:

- The SHF mean-field approach is not ideal for light nuclei, but one can hope that for $B_{\Lambda} = E(^{A-1}Z) - E(^{A}_{\Lambda}Z)$ important cancellations regarding the *nuclear* core structure occur. We explore this idea pragmatically.
- Hypernuclear data set (19 + 19 data points): • $B^{(s)}_{\Lambda}$ for ^{5,6,8}He, ^{7,8,9}Li, ^{7,8,10}Be, ^{9,10,11,12}B, ^{12,13,14}C, ^{15,16}N (Emulsion) Davis, NPA 754, 3 (2005) • $B^{(s)}_{\Lambda}$ for ⁷_{\Left}He, ⁹_{\Left}Be, ¹¹_{\Left}B, ^{12,13}C, ¹⁵_{\Left}N, ¹⁶_{\Left}O (K^-, π^-) Botta et al., NPA 960, 165 (2017) • $B^{(s,p,d,f,g)}_{\Lambda}$ for ¹⁶_{\Left}O, ²⁸_{\Left}Si, ⁵¹_{\Left}V, ⁸⁹_{\Left}Y, ¹³⁹_{\Left}La, ²⁰⁸_{\Left}Pb (π^+, K^+) Hashimoto & Tamura, PPNP 57, 564 (2006) Gal & Hungerford & Millener, RMP 88, 035004 (2016)
- Fit parameters $a_0, a_1, a_2, a_3 \rightarrow 'SLL4' N\Lambda$ force

Results: Light Single-A

Hypernuclei:

• Reasonable fit with $(\Delta B_{\Lambda})_{\rm rms} \approx 0.32 \,{\rm MeV}$

Results: Light Single-A

Hypernuclei:

- Reasonable fit with $\langle \Delta B_{\Lambda} \rangle_{\rm rms} \approx 0.32 \, {\rm MeV}$
 - Exceptions: overbound ${}^{16}_{\Lambda}$ O ? corrected ${}^{12}_{\Lambda}$ C ? cluster nucleus ${}^{9}_{\Lambda}$ Be :

Results: Light Single-A

Hypernuclei:

• Reasonable fit with $\langle \Delta B_{\Lambda} \rangle_{\rm rms} \approx 0.32 \, {\rm MeV}$

• Exceptions: overbound ${}^{16}_{\Lambda}O$? corrected ${}^{12}_{\Lambda}C$? cluster nucleus ${}^{9}_{\Lambda}Be$: large $\langle R_N^2 \rangle \rightarrow \log \rho_N$ $\rightarrow \log V_{\Lambda} \rightarrow \log B_{\Lambda}$

Results: Heavy Single-A Hypernuclei:

 Exp. data too low by ~ 0.6 MeV ? (J. Millener, H. Tamura): Emulsion ¹²_ΛC used for normalization is not accurate see Gal & Hungerford & Millener, RMP 88, 035004 (2016)

Results: NA Skyrme Parameters:

Force		a_0	<i>a</i> ₁	a ₂	a ₃	α	ΔB_{Λ} [MeV]
SLL4		-322.0	15.75	19.63	715.0	1	0.32
SLL4'		-316.0	23.25	13.88	650.0	1	0.40
RAY12	[1]	-237.4	0	-6.85	375.00	1	0.72
MDG3	[2]	-456.0	25.86	0	864.75	2/3	1.87
YBZ5	[3]	-315.3	0	11.57	750.00	1	0.57
SKSH2	[4]	-290.0	0.35	10.68	693.75	1	0.66
YMR	[5]	-1056.2	26.25	35.00	1054.20	1/8	0.51
ΗΡΛ2	[6]	-302.8	23.72	29.85	514.25	1	1.02

SLL4' : $B_{\Lambda}|_{PPNP57}$ not corrected by 0.6 MeV

[1] Rayet, Ann. Phys. 102, 226 (1976); Nucl. Phys. A367, 381 (1981)
[2] Millener & Dover & Gal, Phys. Rev. C38, 2700 (1988)

- [3] Y. Yamamoto & Bandō & Žofka, Prog. Theor. Phys. 80, 757 (1988)
- [4] Fernández & López-Arias & Prieto, Z. Phys. A334, 349 (1989)
- [5] Yamamoto & Motoba & Rijken, Prog. Theor. Phys. Suppl. 185, 72 (2010)

[6] Guleria & Dhiman & Shyam, Nucl. Phys. A886, 71 (2012)

Substantial improvement for corrected data

More Sophistication:

Deformation and Spin-Orbit Splitting:

- Core deformation lowers g.s. energy and splits the Λ s.p. levels, in addition to an explicit ΛN spin-orbit force
- Exp. s.o. splitting in ${}^{13}_{\Lambda}$ C: Kohri et al., PRC 65, 034607 (2002) $E(1p_{1/2}) - E(1p_{3/2}) = 0.152 \pm 0.054 \pm 0.036 \text{ MeV}$

• Deformation effect on Λ s.p. levels:

 Hyperon binding varies by O(1 MeV) due to core deformation: similar shapes of core and hyperon w.f. are energetically preferred

 Precise calculations and precise data are required: O(0.1 MeV) !

• But:

- Only few nuclear deformations are known

- Skyrme forces are not predictive for deformation...

• Deformation effect on Λ s.p. levels:

 Hyperon binding varies by O(1 MeV) due to core deformation: similar shapes of core and hyperon w.f. are energetically preferred

 Precise calculations and precise data are required: O(0.1 MeV) !

• But:

- Only few nuclear deformations are known

- Skyrme forces are not predictive for deformation...

• Deformed (hyper)nuclei, e.g., ³⁰Si:

Strong dependence on the NN Skyrme force, not predictive

The Λ's might 'pull' together a nucleus with a weak deformation minimum

• Neutron-rich (halo) hypernuclei, e.g., Be isotopes:

A's stabilize isotopes near the neutron dripline (SHF+BCS, better approach required for halo states)

• Neutron-rich (halo) hypernuclei, e.g., Be isotopes:

A's stabilize isotopes near the neutron dripline (SHF+BCS, better approach required for halo states)

Summary:

- Optimized SHF parameters for currently known light and heavy hypernuclei: $\Delta B_{\Lambda} \approx 0.32$ MeV
- Experimental open problems: ${}^{12,13}_{\Lambda}C$, ${}^{16}_{\Lambda}O$
- Nuclear core deformation affects $B_{\Lambda}(p, d, ...)$ to $\mathcal{O}(1 \text{ MeV})$

Summary:

- Optimized SHF parameters for currently known light and heavy hypernuclei: $\Delta B_{\Lambda} \approx 0.32$ MeV
- Experimental open problems: ${}^{12,13}_{\Lambda}C$, ${}^{16}_{\Lambda}O$
- Nuclear core deformation affects $B_{\Lambda}(p, d, ...)$ to $\mathcal{O}(1 \text{ MeV})$

Outlook:

- More sophisticated SHF model: pairing, deformation, s.o. splitting, ...
- Beyond mean field: AMP, GCM, ...
- Extend comparison with cluster etc. models
- Extension to double- Λ and Ξ^- hypernuclei ...

Results: Single-A Hypernuclei:

• BHF G-matrix results with Nijmegen YN potentials (no YNN):

Best agreement with NSC89 and NSC97f potentials No indication of strong hyperon TBF