## Studies of Hypernuclei with HI-beams, Nuclear Emulsions and Machine Learning

#### Take R. Saito for the WASA-FRS HypHI collaboration, the Super-FRS Experiment Collaboration, and the Emulsion-ML collaboration

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research,

RIKEN,

Japan

HRS-HYS Research Group (High ReSolution - HYpernuclear Spectroscopy), FRS/NUSTAR department,

GSI Helmholtz Center for Heavy Ion Research,

Germany







EMMI Workshop: Bound states and particle interactions in the 21st century , Trieste, Italy , 3rd - 6th July 2023

### Recent hot topics for few-body hypernuclei On hypertriton



# Recent hot topics for few-body hypernuclei

#### **On hypertriton**



Talk by Zhangbu Xu on Monday

#### <sup>3</sup><sup>A</sup>H Binding energy

B∧(<sup>3</sup>∧H) : 0.13 ± 0.05 MeV G. Bohm et al., NPB 4 (1968) 511 M. Juric et al., NPB 52 (1973) 1

#### STAR (2020)

0.41 ± 0.12 ± 0.11 MeV STAR Collaboration, Nat. Phys. 16 (2020) 409

#### ALICE

0.072 ± 0.063 ± 0.036 MeV arXiv.2209.07360 (2022) talk by Chiara Pinto on Monday 0.102 ± 0.063 MeV

> Talk by Stefania Bufalino in the Hadron2023 conf. (2023)

# Recent hot topics for few-body hypernuclei

#### **On hypertriton**



Talk by Zhangbu Xu on Monday

#### <sup>3</sup><sup>A</sup>H Binding energy

B∧(<sup>3</sup>∧H) : 0.13 ± 0.05 MeV G. Bohm et al., NPB 4 (1968) 511 M. Juric et al., NPB 52 (1973) 1

#### **STAR (2020)**

0.41 ± 0.12 ± 0.11 MeV STAR Collaboration, Nat. Phys. 16 (2020) 409

#### ALICE

#### 0.072 ± 0.063 ± 0.036 MeV arXiv.2209.07360 (2022) talk by Chiara Pinto on Monday 0.102 ± 0.063 MeV

Talk by Stefania Bufalino in the Hadron2023 conf. (2023)



On Ann

HypHI., PRC 88 (2013) 041001



FIG. 5. The enlarged mass spectrum around the  $\Lambda nn$  threshold. Two additional Gaussians were fitted together with the known contributions (the accidentals, the  $\Lambda$  quasifree, the free  $\Lambda$ , and the <sup>3</sup>He contamination). The one at the threshold is for the small peak, while the broad one is for the additional strength above the predicted quasifree distribution.

JLab E12-17-003., PRC 105 (2022) L051001 Talk by Liguang Tang on Wednesday

## Our projects

#### With heavy-ion beams

- Lifetime of light hypernuclei including hypertriton
- Λnn states

#### With nuclear emulsions

- Binding energy of hypernuclei
  - Single-strangeness hypernuclei
     ✓ Stopped two-body decays
     ✓ Multi-body decays
  - Double-strangeness hypernuclei

#### Machine learning







PRODUCTION TARGET

SIS

**S**2

FRS

\$3

**S**4

ESR

With <sup>6</sup>Li+<sup>12</sup>C at 2 A GeV











# The WASA-FRS setup

Talk by Christophe Rappold just before this presentation

Photos by Jan Hosan and GSI/FAIR

# The WASA-FRS collaboration

T.R. Saito<sup>a,b,c,1</sup>, P. Achenbach<sup>d,e</sup>, H. Alibrahim Alfaki<sup>b</sup>, F. Amjad<sup>b</sup>, M. Armstrong<sup>b,f</sup>, K.-H. Behr<sup>b</sup>, J. Benlliure<sup>g</sup>, Z. Brencic<sup>h,i</sup>, T. Dickel<sup>b,j</sup>, V. Drozd<sup>b,k</sup>, S. Dubey<sup>b</sup>, H. Ekawa<sup>a</sup>, S. Escrig<sup>1,a</sup>, M. Feijoo-Fontán<sup>g</sup>, H. Fujioka<sup>m</sup>, Y. Gao<sup>a,n,o</sup>, H. Geissel<sup>b,j</sup>, F. Goldenbaum<sup>p</sup>, A. Graña González<sup>g</sup>, E. Haettner<sup>b</sup>, M.N. Harakeh<sup>k</sup>, Y. He<sup>a,c</sup>, H. Heggen<sup>b</sup>, C. Hornung<sup>b</sup>, N. Hubbard<sup>b,q</sup>,
K. Itahashi<sup>r,s,2</sup>, M. Iwasaki<sup>r,s</sup>, N. Kalantar-Nayestanaki<sup>k</sup>, A. Kasagi<sup>a,t</sup>, M. Kavatsyuk<sup>k</sup>, E. Kazantseva<sup>b</sup>, A. Khreptak<sup>u,v</sup>, B. Kindler<sup>b</sup>, R. Knoebel<sup>b</sup>, H. Kollmus<sup>b</sup>, D. Kostyleva<sup>b</sup>, S. Kraft-Bermuth<sup>w</sup>, N. Kurz<sup>b</sup>, E. Liu<sup>a,n,o</sup>, B. Lommel<sup>b</sup>, V. Metag<sup>j</sup>, S. Minami<sup>b</sup>,
D.J. Morrissey<sup>x</sup>, P. Moskal<sup>v,y</sup>, I. Mukha<sup>b</sup>, A. Muneem<sup>a,z</sup>, M. Nakagawa<sup>a</sup>, K. Nakazawa<sup>4</sup>, C. Nociforo<sup>b</sup>, H.J. Ong<sup>n,aa,ab</sup>, S. Pietri<sup>b</sup>, J. Pochodzalla<sup>d,e</sup>, S. Purushothaman<sup>b</sup>, C. Rappold<sup>1</sup>, E. Rocco<sup>b</sup>, J.L. Rodríguez-Sánchez<sup>g</sup>, P. Roy<sup>b</sup>, R. Ruber<sup>ac</sup>, S. Schadmand<sup>b</sup>,
C. Scheidenberger<sup>b,j</sup>, P. Schwarz<sup>b</sup>, R. Sekiya<sup>ad,r,s</sup>, V. Serdyuk<sup>p</sup>, M. Skurzok<sup>v,y</sup>, B. Streicher<sup>b</sup>, K. Suzuki<sup>b,ae</sup>, B. Szczepanczyk<sup>b</sup>,
Y.K. Tanaka<sup>a,3</sup>, X. Tang<sup>n</sup>, N. Tortorelli<sup>b</sup>, M. Vencelj<sup>h</sup>, H. Wang<sup>a</sup>, T. Weber<sup>b</sup>, H. Weick<sup>b</sup>, M. Will<sup>b</sup>, K. Wimmer<sup>b</sup>, A. Yamamoto<sup>af</sup>, A. Yanai<sup>ag,a</sup>, J. Yoshida<sup>a,ah</sup>, J. Zhao<sup>b,ai</sup>, (WASA-FRS/Super-FRS Experiment Collaboration)

<sup>a</sup>High Energy Nuclear Physics Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 351-0198 Wako, Saitama, Japan, <sup>b</sup>GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, <sup>c</sup>School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China, <sup>d</sup>Institute for Nuclear Physics, Johannes Gutenberg University, 55099 Mainz, Germany, <sup>e</sup>Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany, <sup>f</sup>Institut für Kernphysik, Universität Köln, 50923 Köln, Germany, <sup>g</sup>Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain, <sup>h</sup> Jozef Stefan Institute, 1000 Ljubljana, Slovenia, <sup>i</sup>University of Ljubljana, 1000 Ljubljana, Slovenia, <sup>j</sup>Universität Gießen, 35392 Gießen, Germany, <sup>k</sup>University of Groningen, 9747 AA Groningen, The Netherlands, <sup>1</sup>Instituto de Estructura de la Materia - CSIC, 28006 Madrid, Spain, <sup>m</sup>Tokyo Institute of Technology, 152-8550 Tokyo, Japan, <sup>n</sup>Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China, <sup>o</sup>School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China, <sup>p</sup>Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, <sup>q</sup>Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany, <sup>r</sup>Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan, <sup>s</sup>Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan, <sup>t</sup>Graduate School of Engineering, Gifu University, 501-1193 Gifu, Japan, "INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Roma, Italy, <sup>v</sup>Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland, <sup>w</sup>TH Mittelhessen University of Applied Sciences, 35390 Gießen, Germany, <sup>x</sup>National Superconducting Cyclotron Laboratory, Michigan State University, MI 48824 East Lansing, USA, <sup>y</sup>Center for Theranostics, Jagiellonian University, 30-348 Krakow, Poland, <sup>2</sup> Faculty of Engineering Sciences, Ghulam Ishaa Khan Institute of Engineering Sciences and Technology, 23640 Topi, Pakistan, <sup>aa</sup> Joint Department for Nuclear Physics, Lanzhou University and Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China, <sup>ab</sup>Research Center for Nuclear Physics, Osaka University, 567-0047 Osaka, Japan, ac Uppsala University, 75220 Uppsala, Sweden, ad Kyoto University, 606-8502 Kyoto, Japan, <sup>ae</sup>Ruhr-Universiät Bochum, Institut für Experimentalphysik I, 44780 Bochum, Germany, af KEK, 305-0801 Tsukuba, Ibaraki, Japan, <sup>ag</sup>Saitama University, Sakura-ku, 338-8570 Saitama, Japan, ah Tohoku University, 980-8578 Sendai, Japan, <sup>ai</sup>Peking University, 100871 Beijing, China,

Author list of the EMIS2022 proceedings

### Part of the WASA-FRS collaboration



## Data taking (January – March 2022)

| Run                       | Period             | Data size |
|---------------------------|--------------------|-----------|
| Commissioning run         | 28th Jan 7th Feb.  | 7 TB      |
| Physics run for η' nuclei | 22nd Feb 28th Feb. | 40 TB     |
| Physics run for HypHI     | 10th Mar 19th Mar. | 48 TB     |

92 % of the prop.

#### Acquired data for S447 (hypernuclei)

| Beam                 | Fragment at S4            | Amount                | Time               | Accepted trigger rate |                  |
|----------------------|---------------------------|-----------------------|--------------------|-----------------------|------------------|
| <sup>6</sup> Li beam | <sup>3</sup> He           | 3.3 × 10 <sup>8</sup> | 40.9 hours         | 2600 Hz               | з <sup>у</sup> Ч |
|                      | <sup>4</sup> He           | 0.9 × 10 <sup>8</sup> | 42.0 hours         | 1800 Hz               | 4 <sub>A</sub> F |
|                      | deuteron                  | 1.8 × 10 <sup>8</sup> | 43.9 10015         |                       | nn               |
|                      | proton (mid-<br>rapidity) | 5.3 × 10 <sup>6</sup> | 3.2 hours          | 680 Hz                | Λ                |
| <sup>12</sup> C beam | <sup>3</sup> He           | 1.0 × 10 <sup>8</sup> | 13.5 hours 2400 Hz | 2400 H-               | 3 <sub>A</sub> F |
|                      | O <sup>6</sup>            | 2.4 × 10 <sup>5</sup> |                    | 2400 112              | <sup>9</sup> ^E  |

# Graph Neural Network (GNN) for WASA

Track Finding with

**Graph Neural Network** 

Node : Data point

Edge : Connection

#### **Track Finding**



- Multi particles in HI reaction
- Combinatorial background

#### Graph





Jie Zhou et al., AI Open 1 (2020) 57-81

Eur. Phys. J. A (2023) 59:103 https://doi.org/10.1140/epja/s10050-023-01016-5

#### THE EUROPEAN PHYSICAL JOURNAL A

Special Article - New Tools and Techniques

#### Development of machine learning analyses with graph neural network for the WASA-FRS experiment

H. Ekawa<sup>1,a</sup><sup>(5)</sup>, W. Dou<sup>1,2</sup>, Y. Gao<sup>1,3,4</sup>, Y. He<sup>1,5</sup><sup>(6)</sup>, A. Kasagi<sup>1,6</sup><sup>(6)</sup>, E. Liu<sup>1,3,4</sup>, A. Muneem<sup>1,7</sup><sup>(6)</sup>, M. Nakagawa<sup>1</sup>, C. Rappold<sup>8</sup><sup>(6)</sup>, N. Saito<sup>1</sup>, T. R. Saito<sup>1,9,5</sup><sup>(6)</sup>, M. Taki<sup>10</sup>, Y. K. Tanaka<sup>10</sup>, H. Wang<sup>10</sup>, J. Yoshida<sup>1,11</sup><sup>(6)</sup>

- <sup>1</sup> High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
- <sup>2</sup> Department of Physics, Saitama University, Saitama, Japan
- <sup>3</sup> Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- <sup>4</sup> University of Chinese Academy of Sciences, Beijing, China
- 5 School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- <sup>6</sup> Graduate School of Engineering, Gifu University, Gifu, Japan
- <sup>7</sup> Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan <sup>8</sup> Instituto de Estructura de la Materia. Conseio Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- <sup>9</sup> GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
- 10 Graduate School of Artificial Intelligence and Science, Rikkyo University, Tokyo, Japan
- 11 Department of Physics, Tohoku University, Sendai, Japan

Received: 29 July 2022 / Accepted: 24 April 2023 © The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023 Communicated by Täkashi Nakamura

Abstract The WASA-FRS experiment aims to reveal the nature of light A hypernuclei with heavy-ion beams. The lifetimes of hypernuclei are measured precisely from their decay lengths and kinematics. To reconstruct a  $\pi^-$  track emitted from hypernuclear decay, track finding is an important issue. In this study, a machine learning analysis method with a graph neural network (GNN), which is a powerful tool for deducing the connection between data nodes, was developed to obtain track associations from numerous combinations of hit information provided in detectors based on a Monte Carlo simulation. An efficiency of 98% was achieved for tracking  $\pi^{-}$ mesons using the developed GNN model. The GNN model can also estimate the charge and momentum of the particles of interest. More than 99.9% of the negative charged particles were correctly identified with a momentum accuracy of 63%

stand it for the middle- and long-range interactions based on a variety of nuclear experiments. To reveal the unknown features of the nuclear force, such as short-range interaction, considering a more detailed structure inside the baryons is essential. All baryons consist of three guarks, and nucleons such as neutrons and protons consist of up and down quarks. By introducing other types of quarks into ordinary nuclear systems, one can study the nuclear force in a more general picture. In particular, because the mass of the strange quark is close to that of the up and down quarks, interactions among these three quarks are described under flavoured-SU(3) symmetry. Therefore, a hyperon, which is a type of baryon that contains strange quark(s), plays an important role in investigating baryon-baryon interactions. As the lifetime of hyperon is short ( $\sim 10^{-10}$  s), using them as projectiles or targets is difficult. Therefore, hyperon-nucleon interactions have been studied via hypernuclei, which contain at least

Published in EPJA (May 2023) H. Ekawa et al., Eur. Phys. J. A (2023) **59**, 103 DOI : 10.1140/epja/s10050-023-01016-5

# **GNN: Node clustering**

#### **Machine Learning**

- PyTorch + PyTorch Geometric
- Monte Carlo (MC) simulation
  - Training, Validation, Test
- Learning object
  - Edge : ON / OFF
  - Node : Shared / Not-Shared





H. Ekawa et al., Eur. Phys. J. A (2023) 59, 103

# **GNN: Performance with MC**

| Data size  | Clustering efficiency for $\pi^-$ | Clustering efficiency for others | Training time [h/epoch] |
|------------|-----------------------------------|----------------------------------|-------------------------|
| 100k       | 96.3%                             | 95.1%                            | 0.6                     |
| 300k       | 97.4%                             | 96.2%                            | 2.0                     |
| 1 <b>M</b> | 98.1%                             | 97.1%                            | 7.5                     |



cf. Kalman filter  $\Delta p/p : 9.9 \%$   $\Delta (dx/dz)$ . 3.0 mrad  $\Delta (dy/dz)$ 

H. Ekawa et al., Eur. Phys. J. A (2023) **59**, 103 How about the hypernuclear binding energy?

#### **Nuclear Emulsion**:

#### Charged particle tracker with <u>the best spatial resolution</u> (easy to be < 1 μm, 11 nm at best)

#### Silver halide crystal Diameter: 200 nm Charged particle Medium: gelatin Development Silver clusters

(Latent image)

Getting bigger

20µm





# J-PARC accelerator facility



# J-PARC E07 experiment

K<sup>-</sup> Beam (180cm above the floor)

Emulsion module

**Experimental apparatus** 2016-2017 J-PARC, Ibaraki, Japan

N1 81 8

al at at at at at



# J-PARC E07 experiment

K<sup>-</sup> Beam (180cm above the floor)

Emulsion module



**Experimental apparatus** 2016-2017 J-PARC, Ibaraki, Japan

### Results from J-PARC E07 (Hybrid method)



H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

### Results from J-PARC E07 (Hybrid method)



H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

































#### Data size:

- 10<sup>7</sup> images per emulsion (100 T Byte)
  10<sup>10</sup> images per 1000 emulsions (100 P Byte)
  Number of background tracks:
  Beam tracks: 10<sup>4</sup>/mm<sup>2</sup>
- •Nuclear fragmentations: 10<sup>3</sup>/mm<sup>2</sup>

Current equipments/techniques with visual inspections

**560 years** 







100µm

#### Data size:

- 10<sup>7</sup> images per emulsion (100 T Byte)
  10<sup>10</sup> images per 1000 emulsions (100 P Byte)
  Number of background tracks:
  Beam tracks: 10<sup>4</sup>/mm<sup>2</sup>
- •Nuclear fragmentations: 10<sup>3</sup>/mm<sup>2</sup>

Current equipments/techniques with visual inspections

560 years

**3 vears** 

Machine Learning Sliced image



Millions of single-strangeness hypernuclei 1000 double strangeness hypernuclei (formerly only 5)

## Setup for analyzing emulsions at the High Energy Nuclear Physics Laboratory in RIKEN

- Hypernuclear physics
- Neutron imaging



Challenges for Machine Learning Development MOST IMPORTANT: • Quantity and quality of training data

However,

No existing data for hypertriton with emulsions for training

Our approaches: Producing training data with

- Monte Carlo simulations
- Image transfer techniques

# Production of training data

#### Monte Carlo simulations and GAN(Generative Adversarial Networks)



# Production of training data

#### Monte Carlo simulations and GAN(Generative Adversarial Networks)

Binarized tracks from MC simulations + background from the real data







**Produced training data** 





Binarized (like for simulations)

Real emulsion image

Edges to Photo

GAN: pix2pix

Ayumi Kasagi. Ph.D. thesis (2023) A. Kasagi et al., submitted to NIM A

## Production of training data

Monte Carlo simulations and GAN(Generative Adversarial Networks)



#### Detection of hypertriton events With Mask R-CNN model

K. He, et al., arXiv https://arxiv.org/ abs/1703.06870 (2017).









Detection of each object

At large object density

#### Detection of hypertriton events With Mask R-CNN model

K. He, et al., arXiv https://arxiv.org/ abs/1703.06870 (2017).



Example of training dataset



https://www.cis.upenn.edu/~jshi/ped\_html/



Detection of each object

berson (

At large object density

car 0.92

car 0.860 car 0.931

### Hypertriton search with Mask R-CNN

<sup>3</sup>He





Simulated image

50 µm

<sup>3</sup>∧H

 $\pi^{-}$ 



50 µm

Ayumi Kasagi. Ph.D. thesis (2023) A. Kasagi et al., submitted to NIM A

### Hypertriton search with Mask R-CNN



## Discovery of the first hypertriton event in E07 emulsions

#### nature reviews physics

Explore content 🗸 About the journal 🖌 Publish with us 🗸

nature > nature reviews physics > perspectives > article

#### Perspective | Published: 14 September 2021

#### New directions in hypernuclear physics

Takehiko R. Saito ⊠, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) | Cite this article

#### TRS et al., Nature Reviews Physics, 803-813 (2021) Cover of December 2021 issue

Departure 2013 relation from 12 metallicity control regulary

nature reviews physics



#### Guaranteeing the determination of the hypertriton binding energy SOON Precision: 28 keV E. Liu et al., EPJ A57 (2021) 327

Ayumi Kasagi. Ph.D. thesis (2023) A. Kasagi et al., submitted to NIM A



### Identification of hypertriton and ${}^{4}_{\Lambda}H$ by $\pi^{-}$ track length



Ayumi Kasagi. Ph.D. thesis (2023)

### **Current status**

No. events: 174 (<u>0.4% of the entire E07 data</u>) • <sup>3</sup><sub>^</sub>H: 36

•  ${}^{4}_{\Lambda}$ H: 138 (Identified: 87 + Penetrated: 51)

Calibrated events: 143

- <sup>3</sup><sub>^</sub>H: 36
- ${}^{4}_{\Lambda}$ H: 107 (Identified: 72 + Penetrated: 35)

# Calibration of nuclear emulsions

(A)



## Calibration of nuclear emulsions

(A)

S.F

1.75

1.8 1.85 1.9



Density Density Counts/0.02 Counts/0.02 Entries 74 Mean 3.633 Std Dev 0.03844 Underflow 10 Overflow 6 3.5 3.55 3.6 3.65 3.7 Density [g/cm<sup>3</sup>] 1.6 1.65 Module dependence



Ayumi Kasagi. Ph.D. thesis (2023)

# Analysis for ${}^{4}{}_{\Lambda}H$ binding energy

- With measured Helium momentum (Back-to-back)
- Cut conditions: Inner product =  $-1 (\pm 3\sigma)$

Binding energy on <sup>4</sup><sub>A</sub>H



# Analysis for ${}^{4}{}_{\Lambda}H$ binding energy

- With measured Helium momentum (Back-to-back)
- Cut conditions: Inner product =  $-1 (\pm 3\sigma)$

Binding energy on <sup>4</sup><sub>A</sub>H



→Weighted avarage: To be obtained





#### Byproduct 1:

# Discovery of double-A hypernucleus as a biproduct of ${}^3{}_{\Lambda} H$ search



#### **Byproduct 2:**



#### **Byproduct 2:**



#### **Byproduct 2:**

#### Hypernuclear scattering



### **Current machine learning developments**

#### Improvements for the hypertriton binding energy

- Automated pion tracking
- Automated emulsion calibration

Detection of three- and multi-body single- $\Lambda$  hypernuclear decay (from May 2022)

### Three-body decay event



0.9422

Courtesy of Shohei Sugimoto and Manami Nakagawa

Shohei Sugimoto, Master thesis

### Three-body decay event



### **Current machine learning developments**

#### Improvements for the hypertriton binding energy

- Automated pion tracking
- Automated emulsion calibration

Detection of three- and multi-body single- $\Lambda$  hypernuclear decay (from May 2022)

Search for double-strangeness hypernuclei (from June 2022)

#### MOD100\_PL02\_AREA00

#### V3451

E- capture:
#1: penetrate
#2: stop
#3: stop
#4: decay

second vertex:
#5: stop
#6: decay

third vertex: #7: stop #8: stop #9: stop #9: stop

Courtesy of Yan He and Manami Nakagawa

Only  $\sim$  0.03 % of the entire data analyzed





#### Yan He, Ph.D. thesis

### Nuclear Emulsion + Machine Learning Collaboration

W. Dou<sup>a,b</sup>, V. Drozd<sup>a,c,d</sup>, H. Ekawa<sup>a</sup>, S. Escrig<sup>a,e</sup>, Y. Gao<sup>a,f,g</sup>, Y. He<sup>a,h</sup>, A. Kasagi<sup>a,i,j</sup>, E. Liu<sup>a,f,g</sup>, A. Muneem<sup>a,k</sup>, M. Nakagawa<sup>a</sup>, K. Nakazawa<sup>a,i,l</sup>, C. Rappold<sup>e</sup>, N. Saito<sup>a</sup>, T.R. Saito<sup>a,d,h</sup>, S. Sugimoto<sup>a,b</sup>, M. Taki<sup>j</sup>, Y.K. Tanaka<sup>a</sup>, A. Yanai<sup>a,b</sup>, J. Yoshida<sup>a,m</sup>, M. Yoshimoto<sup>n</sup>, and H. Wang<sup>a</sup>

- <sup>a</sup> High Energy Nuclear Physics Laboratory, RIKEN, Japan
- <sup>b</sup> Department of Physics, Saitama University, Japan
- <sup>c</sup> Energy and Sustainability Research Institute Groningen, University of Groningen, Netherlands
- <sup>d</sup> GSI Helmholtz Centre for Heavy Ion Research, Germany
- <sup>e</sup> Instituto de Estructura de la Materia, Spain
- <sup>f</sup> Institute of Modern Physics, Chinese Academy of Sciences, China
- <sup>g</sup> University of Chinese Academy of Sciences, China
- <sup>h</sup> School of Nuclear Science and Technology, Lanzhou University, China
- <sup>i</sup> Graduate School of Engineering, Gifu University, Japan
- <sup>j</sup> Graduate School of Artificial Intelligence and Science, Rikkyo University, Japan
- <sup>k</sup> Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan
- <sup>1</sup> Faculty of Education, Gifu University, Japan
- <sup>m</sup> Department of physics, Tohoku University, Japan
- <sup>n</sup> RIKEN Nishina Center, RIKEN, Japan

## Neutron imaging with nuclear emulsions



#### A. Muneem et al., Journal of Applied Physics, 133, 054902 (2023)

Precise 2D imaging Submicron resolution



Image reconstruction using beams with large angular dispersion and ML



# Summary

#### The WASA-FRS experiment at GSI (2022) with HI beams

- Hypertriton lifetime
- nn $\Lambda$  state
- Proton-rich hypernuclei
- Development with Machine Learning (GNN)
- Data analyses in progress

#### Analyses of the J-PARC E07 nuclear emulsion with Machine Learning

- Binding energy of  ${}^{3}_{\Lambda}$ H and  ${}^{4}_{\Lambda}$ H
- Single- $\Lambda$  hypernuclei with multi-body decay channels
- Double-strangeness hypernuclei