EMMI-GSI Workshop, Trieste, Jul. 2023 Avraham Gal, HU, Jerusalem, Israel **Remarks on the elusive H dibaryon** triggered by G. Farar's idea to make it a long-lived Dark-Matter candidate followed by Update on ΛNN content of V_{Λ} fitting all $(1s_{\Lambda}, 1p_{\Lambda})$ pairs, $12 \le A \le 208$: (i) **OVERBOUND** ΛN poential depth $D^{(2)}_{\Lambda}$. (ii) **REPULSIVE** ANN potential depth, $D^{(3)}_{\Lambda} = 11.3 \pm 1.4 \text{ MeV at } \rho_0 = 0.17 \text{ fm}^{-3},$ constraining the 'hyperon puzzle'. E. Friedman, A. Gal, PLB 837 (2023) 137669 & NEW arXiv:2306.06973

Elusive H Dibaryon

 $\begin{array}{l} \textbf{The elusive H dibaryon}\\ \textbf{Jaffe's H(uuddss) [PRL 38 (1977) 195] predicted stable}\\ \textbf{H} \sim \mathcal{A}[\sqrt{1/8} \ \Lambda\Lambda + \sqrt{1/2} \ N\Xi - \sqrt{3/8} \ \Sigma\Sigma,]_{I=S=0} \end{array}$

- No H signal in past (K^-, K^+) experiments at AGS-BNL & PS-KEK. Awaiting J-PARC E42.
- Bound H ruled out by STAR study of ΛΛ correlation femtoscopy [PRL 114 (2015) 022301].
- Bound H not ruled out by ALICE study of ΛΛ correlation femto [PLB 797 (2019) 134822].
- Bound H above Λpπ⁻, ~37 MeV below ΛΛ, ruled out by ALICE search for a weakly decaying ΛΛ bound state [PLB 752 (2016) 267].

- Bound H above $\Lambda p\pi^-$ ruled out in Belle study of $\Upsilon(1S,2S)$ decays [PRL 110 (2013) 222002].
- Deeply bound H below Λn , $m_H \leq 2.05$ GeV, ruled out in BaBar's $\Upsilon(2S,3S) \rightarrow H\overline{\Lambda}\overline{\Lambda}$ search [PRL 122 (2019) 072002].
- H is weakly bound in LQCD calculations, e.g., PRL 127 (2021) 242003, see Wittig's talk. SU(3)_f breaking might push it to ≈26 MeV in the ΛΛ continuum, near NE threshold: HALQCD Collaboration [NPA 881 (2012) 28] & Haidenbauer-Meißner [NPA 881 (2012) 44].

Constraints from Hypernuclei

Nagara event, ${}_{\Lambda\Lambda}{}^{6}$ He, (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}$ He_{g.s.})=6.91±0.16 MeV, uniquely identified.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{5}_{\Lambda}\text{He} + p + \pi^{-}$ (no ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{4}\text{He} + \mathbf{H}$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to two Z=1 recoils + n. Few other weakly decaying ${}_{\Lambda\Lambda}^{A}$ Z hypernuclei identified.

Constraints from Hypernuclei

- To forbid ${}^{6}_{\Lambda\Lambda}$ He \rightarrow H+⁴He, set B(H) \leq 7 MeV. However, ${}^{6}_{\Lambda\Lambda}$ He comes out then overbound [Gal, PRL 110 (2013) 179201].
- A correlated $\Lambda\Lambda$ pair in a given ${}^{A}_{\Lambda\Lambda}\mathbf{Z}$ would decay strongly to a bound H, contrary to observing ${}^{A}_{\Lambda\Lambda}\mathbf{Z}$ in weak decay. Furthermore,
- H \rightarrow An weakly, $\tau \sim 10^{-10}$ sec. If below An, it decays weakly, H \rightarrow nn, by π exchange, with τ not much longer than 1yr, $\ll \tau$ (Universe).
- Thus, a deeply bound uuddss 'sexaquark' fails as a long-lived Dark-Matter candidate [Barnea-Gal-Schaefer, in progress].

Λ NN vs. Λ N content of V_Λ^{opt} from Λ hypernuclei

Update: Millener, Dover, Gal PRC 38, 2700 (1988)

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

 B_{Λ} values in ${}^{7}_{\Lambda}Li$ to ${}^{208}_{\Lambda}Pb$ from experiment and as calculated from a 3-parameter WS potential, suggesting a Λ -nucleus potential depth $D_{\Lambda} \approx -30$ MeV. Data: Table IV Gal-Hungerford-Millener, RMP 88 (2016) 035004.

\mathbf{D}_{Λ} in $\Lambda \mathbf{N}$ - $\Sigma \mathbf{N}$ models

Most 2-body YN models overbind: $|D_{\Lambda}^{(2)}| > 30$ MeV.

- NSC and ESC models overbind, with $D_{\Lambda}^{(2)} \sim -40$ MeV.
- $\chi EFT(LO)$ overbinds, substantial cutoff dependence.
- $\chi EFT(NLO)$: substantial model & cutoff dependence, NLO13(600): -21.6 MeV, NLO19(600): -32.6 MeV.
- $\chi \text{EFT}(N^2 \text{LO})$ overbinds, $D_{\Lambda}^{(2)} \approx -33$ to -38 MeV.

Underbinding would be disastrous for neutron-star matter considerations, implying attractive ΛNN contribution $D_{\Lambda}^{(3)}$ which will soften the EoS at sufficiently large density. If repulsive, how large $D_{\Lambda}^{(3)}$ is?

Hyperon puzzle: AFDMC calculations

- ΛN overbinds; added ΛNN stiffens neutron-star EoS.
- However, problematic ${}_{\Lambda}^{5}$ He & unlisted ${}_{\Lambda}^{17}$ O B_{Λ} input.
- Produced nuclear radii are $\approx 20\%$ too small.

Critique of Skyrme-Hartree-Fock (SHF)

Millener-Dover-Gal, PRC 38 (1988) 2700 Schulze-Hiyama, PRC 90 (2014) 047301

	(2)	- (2)	0 -
$V_{\Lambda}(\rho_N) = [V$	$V_{\Lambda}^{(2)}(\rho_N) = a_0 \rho_N] +$	$-\left[V_{\Lambda}^{(3)}(\rho_N)=\right]$	$a_3 ho_N^2]$

is fitted to some $B_{\Lambda}(A)$ data points $[\rho_0=0.17 \text{ fm}^{-1}]$

MDG883 -57.8 31.4 -26.4 SH1435 -55.4 20.4 -35.0^{\dagger}	Ref.	Points	$V_{\Lambda}^{(2)}(\rho_0)$	$V^{(3)}_{\Lambda}(ho_0)$	$V_{\Lambda}(ho_0)$ (MeV)
SH1435 -55.4 20.4 -35.0^{+}	MDG88	3	-57.8	31.4	-26.4
	SH14	35	-55.4	20.4	-35.0^{\dagger}
present (Q) 2 -57.6 30.2 -27.4	present (Q)	2	-57.6	30.2	-27.4

 $^{\dagger} \approx -31 \,\, {
m MeV}$ adding ${
m M}_{
m eff}(\Lambda)$ contribution.

- Introduce (WRW) Pauli correlations at $\rho^{4/3}$, affecting higher density powers, e.g., ρ^2 .
- WRW: Waas-Rho-Weise, NPA 617 (1997) 449, practised since 2013 in K^- atoms analyses.

WRW density dependence of V_{Λ}

$$\Lambda N \quad \Rightarrow \quad V_{\Lambda}^{(2)}(\rho) = -\frac{4\pi}{2\mu_{\Lambda}} b_0^{\text{lab}}(\rho) \rho$$

$$b_0^{\text{lab}}(\rho) = \frac{b_0^{\text{lab}}}{1 + \frac{3k_F}{2\pi} b_0^{\text{lab}}} \qquad b_0^{\text{lab}} = \left(1 + \frac{A - 1}{A} \frac{\mu_\Lambda}{m_N}\right) b_0$$

for Pauli correlations, with $k_F = (3\pi^2 \rho/2)^{1/3}$. Short-range correlations negligible at $\rho \leq \rho_0$. Pauli affects terms beyond $\rho^{4/3}$, e.g., ρ^2 . Low density limit: $b_0 = \Lambda N$ scattering length.

$$\Lambda NN \Rightarrow V_{\Lambda}^{(3)}(\rho) = +\frac{4\pi}{2\mu_{\Lambda}} \left(1 + \frac{A-2}{A} \frac{\mu_{\Lambda}}{2m_{N}}\right) B_{0} \frac{\rho^{2}}{\rho_{0}}$$

Applying Pauli to $V_{\Lambda}^{(3)}(\rho)$ has a minor effect. Fit b_0 and B_0 to $\mathbf{B}_{\Lambda}^{1s,1p}({}^{16}_{\Lambda}\mathbf{N})$.

Fit $\mathbf{b}_0 \& \mathbf{B}_0$ to $\mathbf{B}^{1s,1p}_{\Lambda}({}^{16}_{\Lambda}\mathbf{N})$, then calculate all other $\mathbf{B}^{1s,1p}_{\Lambda}(\mathbf{A})$. Note: neutron excess in Model Y is decoupled from sym. nucl. core: $\rho^2 = (\rho_{\text{sym}} + \rho_{\text{exc}})^2 \rightarrow (\rho_{\text{sym}}^2 + \rho_{\text{exc}}^2)$.

$\Lambda \mathbf{N}$ & $\Lambda \mathbf{NN}$ contributions to \mathbf{D}_{Λ}

Model	Pauli	$\mathbf{D}^{(2)}_{\Lambda}$	$\mathbf{D}^{(3)}_{\Lambda}$	${f D}_{\Lambda}~({ m MeV})$
Р	No	-34.1	—	-34.1
Р'	Yes	-31.3	—	-31.3
MDG88	No	-57.8	31.4	-26.4
\mathbf{Q}	No	-57.6	30.2	-27.4
\mathbf{X}, \mathbf{Y}	Yes	-39.9	13.9	-26.0

- Final depth values, including uncertainties: $D_{\Lambda}^{(2)} = -40.4 \pm 0.6 \text{ MeV}, D_{\Lambda}^{(3)} = 13.9 \pm 1.4 \text{ MeV}$ $D_{\Lambda} = -26.5 \pm 1.5 \text{ MeV}.$
- AFDMC depths: scale $\rho_0=0.17 \text{ fm}^{-3} \text{ by } r_N^{-3}$. $D_{\Lambda}^{(2)}=-78.9\pm1.2 \text{ MeV}, D_{\Lambda}^{(3)}=53.0\pm5.3 \text{ MeV}$ $D_{\Lambda}=-26.5\pm1.5 \text{ MeV}.$

ANN vs. AN content of V_{Λ}^{opt} Least Squares Fit to A Hypernuclei UPDATE: Friedman-Gal, arXiv:2306.06973

Two-parameter ($\Lambda N \& \Lambda NN$) least-squares fit to $B_{\Lambda}^{1s,1p}(A)$. Solid: 18 data points, dashed: less ${}^{12}_{\Lambda}B \& {}^{13}_{\Lambda}C$. Decoupled neutron excess: $\rho^2 = (\rho_{sym} + \rho_{exc})^2 \rightarrow (\rho_{sym}^2 + \rho_{exc}^2)$.

1s_{Λ} best-fit χ^2 : all data and also less ${}^{12}_{\Lambda}$ B & ${}^{13}_{\Lambda}$ C where new noncentral ΛNN terms arise, unconstrained in mid p-shell Λ hypernuclei by γ ray data, etc..

1s_A & 1p_A best-fit χ^2 excluding ${}^{12}_{A}$ B & ${}^{13}_{A}$ C. 'with F': $\rho^2 = (\rho_{\text{sym}} + \rho_{\text{exc}})^2 \rightarrow (\rho^2_{\text{sym}} + \rho^2_{\text{exc}})$. 'without F': full $\rho^2 = (\rho_{\text{sym}} + \rho_{\text{exc}})^2$.

 $B_{\Lambda}(1d,1f)$ (two lower lines) calculated by fitting to $B_{\Lambda}(1s,1p)$ (two upper lines).

 $\mathbf{B}_{\Lambda}({}^{48}_{\Lambda}\mathbf{K})$ - $\mathbf{B}_{\Lambda}({}^{40}_{\Lambda}\mathbf{K})$ for $\mathbf{1s}_{\Lambda}$ and $\mathbf{1p}_{\Lambda}$ states, with & without F, as function of \mathbf{r}_{n} - \mathbf{r}_{p} in ${}^{48}_{\Lambda}\mathbf{K}$, ahead of upcoming 40,48 Ca(e,e'K⁺) ${}^{40,48}_{\Lambda}\mathbf{K}$ JLab exp.

ΛNN summary & outlook

- $\mathbf{V}_{\Lambda}^{\text{opt}}$ applied to $(\mathbf{1s}_{\Lambda}, \mathbf{1p}_{\Lambda})$ single-particle states across the periodic table.
- Pauli corrected ΛN term, plus ΛNN term.
- Decoupling ρ_{exc} from ρ_{sym} in $\Lambda N_1 N_2 \ \rho^2$ term suggests $\tau_1 \cdot \tau_2$ isospin structure, consistently with $\Lambda \to (\Sigma, \Sigma^*) \to \Lambda$ isovector excitations.
- Depth values $D_{\Lambda}^{(2)}$ & $D_{\Lambda}^{(3)}$ fully correlated: $D_{\Lambda}^{(2)} = -38.6 \pm 0.8 \text{ MeV}$ with $b_0 = 1.44 \pm 0.10 \text{ fm}$, $D_{\Lambda}^{(3)} = 11.3 \pm 1.4 \text{ MeV}$, $D_{\Lambda} = -27.3 \pm 0.6 \text{ MeV}$.
- $\mathbf{D}_{\Lambda}^{(3)} \approx 11 \text{ MeV}$ excludes in EFT Λ hyperons from dense neutron-star matter, $\mu_{\Lambda} > \mu_n$, see Gerstung-Kaiser-Weise, EPJA 56 (2020) 175.

W. Weise, EPJ Web Conf. 271 (2022) 06003 Following Gerstung-Kaiser-Weise, EPJA 56 (2020) 175 Thanks for your attention!