

RIKEN interdisciplinary Theoretical & Mathematical Sciences

Evidence of a p- ϕ bound state

Emma Chizzali^{1,2}, Yuki Kamiya^{3,4}, <u>Raffaele Del Grande^{2,*}</u>, Takumi Doi⁴, Laura Fabbietti², Tetsuo Hatsuda⁴ and Yan Lyu^{4,5} arXiv:2212.12690 [nucl-ex]

¹Max-Planck-Institut für Physik
 ²Physik Department E62, Technische Universität München
 ³Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn
 ⁴RIKEN Interdisciplinary Theoretical and Mathematical Science Program (iTHEMS)
 ⁵State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University

EMMI Workshop: Bound states and particle interactions in the 21st century 3-6 July 2023, Trieste, Italy

*raffaele.del-grande@tum.de

Motivation

- Predicted by various theoretical calculations
- No experimental evidence
 - Standart method of invariant ٠ mass measurment not yet available
- Accessible by studying interaction among constituents

	System	E _B [MeV]
QCD Van der Waal using Yukawa type Potential ¹	φN	1.8
Chiral quark model ²	φN	3.0
Monte Carlo study of ϕ photoproduction from nuclear targets ³	φN	2.5
Quark delocalization color screening model ⁴	φN	0.3-8.8
Unitary coupled-channel approximation anchored to ALICE pφ scattering data ⁵	φN	9.0
Phenomenological potential+variational method ⁶	φN	9.3/9.23
	φNN	10.0/17.5
Phenomenological potential+variational method ⁷	φN	9.5
	φNN	39.8
	φφΝΝ	124.6

¹H. Gao, T.-S. H. Lee, and V. Marinov, Phys. Rev. C 63 (2001) 022201(R) ²F. Huang, Z.Y. Zhang, and Y.W. Yu, Phys. Rev. C 73 (2006) 025207

³H. Gao et al., Phys. Rev. C 95 (2017) 055202

⁴S. Liska, H. Gao, W. Chen, and X. Qian, Phys. Rev. C **75** (2007) 058201

⁵B.-X. Sun, Y.-Y. Fan, and Q.-Q. Cao, arXiv, 2206.02961 (2022)

⁶V. B. Belyaev, W. Sandhas, and I. I. Shlyk, Few-Body Syst. 44 (2008) 347

⁷S. A. Sofianos, G. J. Rampho, M. Braun, and R. M. Adam, J. Phys. G. 37 (2010) 085109

EMMI Workshop | Raffaele Del Grande

3

What we know so far

$$C(k^*) = \mathcal{N} \frac{N_{same}(k^*)}{N_{mixed}(k^*)} = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition
$$\sum_{\substack{\text{S. E. Koonin, Physics Letters B 70 (1977) 43-47\\\text{S. Pratt, Phys. Rev. C 42 (1990) 2646-2652}}$$

Relative momentum $\vec{k}^* = \frac{1}{2} |\vec{p}_1^* - \vec{p}_2^*|$ and $\vec{p}_1^* + \vec{p}_2^* = 0$
Relative distance $\vec{r}^* = \vec{r}_1^* - \vec{r}_2^*$

EMMI Workshop | Raffaele Del Grande

4

TECHNISCHE UNIVERSITÄT MÜNCHEN

5

6

7

High multiplicity (HM) **pp collisions** at $\sqrt{s} = 13$ TeV

Excellent PID with ALICE Detector \rightarrow charged particles measured directly with purities ~ 99%

Spin averaged scattering parameters

• Observation of **attractive** $p-\phi$ interaction

Spin averaged scattering parameters

C(k*)

- Observation of **attractive** $p-\phi$ interaction
- Spin-averaged scattering parameters extracted by employing the analytical Lednicky-Lyuboshits approach
 R. Lednicky and V.L. Lyuboshits, Sov. J. Nucl. Phys. 53 (1982) 770
- Imaginary contribution to the scattering length f₀ accounts for inelastic channels

 $\begin{aligned} \Re(f_0) &= 0.85 \pm 0.34(stat.) \pm 0.14(syst.) \text{ fm} \\ \Im(f_0) &= 0.16 \pm 0.10(stat.) \pm 0.09(syst.) \text{ fm} \\ d_0 &= 7.85 \pm 1.54(stat.) \pm 0.26(syst.) \text{ fm} \end{aligned}$

- Elastic p- ϕ coupling dominant contribution to the interaction in vacuum

ALICE Collab., PRL **127** (2021) 172301

Lattice Calculation

- Sign

JNIVERSITÄT 'NCHEN

Lattice potential ⁴S_{3/2}

- Yan Lyu et al., Phys. Rev. D 106 (2022) 074507
- First simulation of the N-φ system in large lattice volume $\simeq (8.1 \text{ fm})^3$ and lattice spacing a $\simeq 0.08 \text{ fm}$

Light dynamical quarks near the physical point

Hadron	Lattice [MeV]	Expt. [MeV]	
π	146.4(4)	138.0	
Κ	524.7(2)	495.6	
ϕ	1048.0(4)	1019.5	
N	954.0(2.9)	938.9	

- Attractive core \rightarrow Pauli exclusion principle does not operate due to no common guarks
- Long-ranged attractive tail, hints of pion dynamics •

 $f_0 = 1.43^{+0.23}_{-0.23}(stat.)^{+0.06}_{-0.36}(syst.)$ fm * $d_0 = 2.36^{+0.10}_{-0.10}(stat.)^{+0.48}_{-0.02}(syst.)$ fm

JNIVERSITÄI MÜNCHEN

2.5

3.0

Lattice Calculation

UNIVERSITÄT *****NCHEN

Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

EMMI Workshop | Raffaele Del Grande

⁴S_{3/2} channel

•

2.5

Studying spin dependent interaction

pp √*s* = 13 TeV

Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

TLIN TECHNISCHE UNIVERSITÄT MÜNCHEN

²²

⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Potential at physical-pion mass

Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

²S_{1/2} channel

- Shows signs of open channels
 - ΛΚ (²S_{1/2}), ΣΚ (²S_{1/2})
- No potential available from lattice QCD yet, due to possible effects from these open channels
- Modelled using complex potential provided by Dr. Yuki Kamiya

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Potential at physical-pion mass

²S_{1/2} channel

- Shows signs of open channels
 - ΛΚ (²S_{1/2}), ΣΚ (²S_{1/2})
- No potential available from lattice QCD yet, due to possible effects from these open channels
- Modelled using complex potential provided by Dr. Yuki Kamiya

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

Imaginary Part of Pot

Kaon exchange considered to give most significant contribution to coupling of decay channels

⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Potential at physical-pion mass

Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

²S_{1/2} channel

- Shows signs of open channels
 - ΛΚ (²S_{1/2}), ΣΚ (²S_{1/2})
- No potential available from lattice QCD yet, due to possible effects from these open channels
- Modelled using complex potential provided by Dr. Yuki Kamiya

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

Imaginary Part of Pot

Kaon exchange considered to give most significant contribution to coupling of decay channels

```
Real Part of Pot
V_{LATTICE, MOD}(r) = \beta \cdot V_{short}(r) + V_{2\pi}(r)
```


⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Potential at physical-pion mass

Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

²S_{1/2} channel

- Shows signs of open channels
 - ΛΚ (²S_{1/2}), ΣΚ (²S_{1/2})
- No potential available from lattice QCD yet, due to possible effects from these open channels
- Modelled using complex potential provided by Dr. Yuki Kamiya

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

Imaginary Part of Pot

Kaon exchange considered to give most significant contribution to coupling of decay channels

Real Part of Pot $V_{LATTICE, MOD}(r) = \beta \cdot V_{short}(r) + V_{2\pi}(r)$

⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Potential at physical-pion mass

Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

²S_{1/2} channel

- Shows signs of open channels
 - ΛΚ (²S_{1/2}), ΣΚ (²S_{1/2})
- No potential available from lattice QCD yet, due to possible effects from these open channels
- Modelled using complex potential provided by Dr. Yuki Kamiya

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

Imaginary Part of Pot

Kaon exchange considered to give most significant contribution to coupling of decay channels

Real Part of Pot $V_{LATTICE, MOD}(r) = \beta \cdot V_{short}(r) + V_{2\pi}(r)$

MÜNCHEN

MÜNCHEN

Complex ²S_{1/2} Potential

$$V_{\frac{1}{2}}(r) = V_{LATTIC,MOD}(r) + i \cdot \sqrt{f(r;b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

$$\beta \cdot V_{short}(r) + V_{2\pi}(r) \qquad \simeq 10$$

- Best fit to data obtained for attractive potential
 - $\beta = 7.0^{+0.8}_{-0.2}(stat.)^{+0.2}_{-0.2}(syst.)$
 - $\gamma = 0.0^{+0.0}_{-0.2}(stat.)^{+0.0}_{-0.2}(syst.)$
- Repulsive potential (β <0) excluded by over 3σ
- Within uncertainties room for inelastic contributions expected by theory

30 2σ 1σ attractive 25 5 20 0 15 repulsive -5 10 -10-2.5 -2 -3 -1.5 -0.5 _1 0

arXiv:2212.12690 [nucl-ex]

UNIVERSITÄT MÜNCHEN

> N X

Imaginary Pot restricted to γ<0 (attractive) to model absorption processes ³⁰

Complex ²S_{1/2} Potential

$$V_{\frac{1}{2}}(r) = V_{LATTIC,MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

$$\beta \cdot V_{short}(r) + V_{2\pi}(r)$$

- Best fit to data obtained for attractive potential
 - $\beta = 7.0^{+0.8}_{-0.2}(stat.)^{+0.2}_{-0.2}(syst.)$
 - $\gamma = 0.0^{+0.0}_{-0.2}(stat.)^{+0.0}_{-0.2}(syst.)$
- Repulsive potential (β <0) excluded by over 3σ
- Within uncertainties room for inelastic contributions expected by theory

S(r) [fm⁻¹

 4π r^2

Complex ²S_{1/2} Potential

TECHNISCHE UNIVERSITÄT MÜNCHEN

- C_{1/2}(k*) < 1 ("repulsive"-type with negative scattering length Re(f₀))
- attractive ²S_{1/2} potential

→ FIRST EVIDENCE of a bound state in S=1/2 channel

• Variation of the form of the potential does not affect the results of the analysis

Bound state

- Estimation of binding energy E_B for S=1/2
 - Scattering parameters

$$E_B = \frac{1}{2\mu d_0^2} \left(1 - \sqrt{1 + 2\frac{d_0}{f_0}} \right) = 13.6 - 92.0 \ MeV$$

Schrödinger Equation

 $E_B = 14.7 - 56.6 \, MeV$

- Results compatible/larger than theory predictions
- Sizable binding energy predicted by theory

H. Gao, T.-S. H. Lee, and V. Marinov, Phys. Rev. C 63 (2001) 022201(R)
F. Huang, Z.Y. Zhang, and Y.W. Yu, *Phys. Rev. C* 73 (2006) 025207
S. A. Sofianos, G. J. Rampho, M. Braun, and R. M. Adam, *J. Phys. G.* 37 (2010) 085109
V. B. Belyaev, W. Sandhas, and I. I. Shlyk, *Few-Body Syst.* 44 (2008) 347

- $E_{\varphi N}$ up to 10 MeV
- Even larger for A-Body systems (E $_{\phi NN}$ up to 40 MeV, E $_{\phi \phi NN}$ up to 125 MeV)

Image: ALICE collaboration

Summary and outlook

- Bound state study via correlation analysis
 - Experimental p-φ correlation function by ALICE ALICE Collab., PRL 127 (2021) 172301
 - Published lattice potential for S=3/2 Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Spin S=1/2 component of interaction extracted for the first time arXiv:2212.12690 [nucl-ex]
 - Strongly attractive potential, supporting a bound state
 - Room for absorbtion due to sizable imaginary contirbution to the potential
- Motivation for
 - Further bound state studies using correlation approach
 - Invariant mass analysis of possible decay products of the φN bound state

Additional material

EMMI Workshop | Raffaele Del Grande

What about ²S_{1/2}

- Two body channels
- Time dependence of potential
 - clear open channel effect in ²S_{1/2} case
- No lattice Potential available at the moment

TECHNISCHE UNIVERSITÄT

MÜNCHEN

Analysis details

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at √s = 13 TeV
- Excellent PID with ALICE Detector
 - Proton candidates measured directly (purity ~99%)
 - φ meson reconstruction
 - Decay channel $\phi \to K^+K^-$
 - Candidates consist of
 - Combinatorial background \rightarrow random • combination of uncorrelated kaons

MÜNCHEN

Analysis details

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at √s = 13 TeV
- Excellent PID with ALICE Detector
 - Proton candidates measured directly (purity ~99%)
 - φ meson reconstruction
 - Decay channel $\phi \to K^+K^-$
 - Candidates consist of
 - Combinatorial background \rightarrow random combination of uncorrelated kaons
 - Signal \rightarrow real ϕ mesons

ΝÜΝCΗΕΝ

Analysis details

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at $\sqrt{s} = 13$ TeV
- Excellent PID with ALICE Detector
 - Proton candidates measured directly (purity ~99%)
 - ϕ meson reconstruction
 - Decay channel $\phi \to K^+K^-$
 - Candidates consist of
 - Combinatorial background → random combination of uncorrelated kaons
 - Signal \rightarrow real ϕ mesons
 - Purity of φ meson candidates ${\sim}66\%$

ΜÜΝCΗΕΝ

Raw correlation function

Includes additional background contributions besides the one arising from genuine FSI interaction

EMMI Workshop | Raffaele Del Grande

Raw correlation function

 Non-femtoscopic background Minijet contribution estimated with PYTHIA 8 + baseline

Raw correlation function

- Non-femtoscopic background Minijet contribution estimated with PYTHIA 8 + baseline
- Combinatorial background obtained from sidebands of φ meson invariant mass spectrum

Raw correlation function

- Non-femtoscopic background Minijet contribution estimated with PYTHIA 8 + baseline
- Combinatorial background obtained from sidebands of φ meson invariant mass spectrum
- \rightarrow Combined to total background used to extract genuine correlation function from data

MÜNCHEN

The Source

• Particle emission from Gaussian core source

The Source

- Particle emission from Gaussian core source
- Core radius effectively increased by shortlived strongly decaying **resonances** ($c\tau \approx r_{core}$)
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849

The Source

TECHNISCHE UNIVERSITÄT MÜNCHEN

- Particle emission from Gaussian core source
- Core radius effectively increased by shortlived strongly decaying **resonances** ($c\tau \approx r_{core}$)
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849
- Gaussian core source scales with $\langle m_T \rangle$
 - r_{core} = 0.98 ± 0.04 fm
- Effects from short-lived resonances
 - no relevant contribution from strongly decaying resonances feeding to the φ
 - Sizable amount of protons from decay of e.g. Delta resonances (only ~33% primordial protons)
 - effective Gaussian size: r_{eff} = 1.08 ± 0.05 fm

Lednicky-Lyuboshits Model

$$C(k^*) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)}{r_{eff}} \right|^2 \left(1 - \frac{d_0}{2\sqrt{\pi}r_{eff}} \right) + \frac{2\Re f(k^*)}{\sqrt{\pi}r_{eff}} F_1(2k^*r_{eff}) - \frac{\Im f(k^*)}{r_{eff}} F_2(2k^*r_{eff}) \right]$$

Analytical approach to model CF for strong final state interaction within effective range expansion R. Lednicky and V.L. Lyuboshits, *Sov. J. Nucl. Phys.* **53** (1982) 770

- Isotropic source of Gaussian profile $S(r^*)$
- Scattering amplitude: $f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} ik^*\right)^{-1}$
 - Effective range d_0 and scattering length f_0
- Spin averaged scattering parameters

Scattering length

Different sign
conventionFigure 2.6: Reduced wave-function u(r) for zero-energy ($k^* \approx 0$) as function of r for a repulsive
potential (a), an attractive potential (b) and increased attractive potential (c). The intercept of the
outside u(r) with the r-axis gives the scattering length a. Figures taken from [113].

Correlation function and bound states

- Correlation functions can be used to study the existence of bound states
- Interplay between system size and scattering length can lead to a size-dependent modification of the correlation function in presence of a bound state

$$C(q) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} \int_0^{2x} dt \frac{e^{t^2 - 4x^2}}{x} - \frac{(1 - e^{-4x^2})}{2} \right]$$
$$x = qR \quad y = \frac{R}{a_0}$$

R= source size q= invariant relative momentum a₀= scattering length

What about ²S_{1/2}

- Two body channels
- Time dependence of potential
 - clear open channel effect in ${}^{2}S_{1/2}$ case

TECHNISCHE UNIVERSITÄT

MÜNCHEN

Two Pion Exchange

- Non-perturbative gluon exchange expected to appear in the form of the TPE at long distance
- Spatial effective energy fitted to lattice data

$$E_{\mathrm{eff}}(r) = -rac{\ln[-V(r)r^2/lpha]}{r},$$

Parametrization of the ⁴S_{3/2} potential

EMMI Workshop | Raffaele Del Grande

MÜNCHEN

Pionmass variation

- Pion mass of 146.4 MeV used in lattice calculations unphysical → leads to larger scattering parameters
- To estimate potential at physical pion mass:
 - Fit of lattice potential performed using pion mass of 146.4 MeV
 - Changing pion mass to the isospin-average of 138.0 MeV, while potential parameters remain fixed from fit to data

Potentials

EMMI Workshop | Raffaele Del Grande

Potentials

 Removing the short range part of the potential the result does not change

Potential		Fit results			Scatt length S=1/2	
S=1/2	S=3/2	min χ^2	β	Y	Re(f0)	lm(f0)
standard	standard	6.8	7.0	0.0	-1.47	0.00
standard	a1=0	5.0	6.8	0.0	-1.63	0.00
a1=0	a1=0	5.1	10.2	0.0	-1.66	0.00
a1=0	standard	6.9	10.4	0.0	-1.56	0.00

TECHNISCHE UNIVERSITÄT MÜNCHEN

Potentials

• Removing the short range part of the potential the result does not change

