Approaching a SU(3) Energy Density Functional

Horst Lenske Institut für Theoretische Physik, JLU Giessen ^{and} Madhumita Dhar Cooch Behar Engineering College

Agenda

- SU(3) symmetry and octet BB-interactions
- Exploiting SU(3) relations for a covariant Octet-EDF
- Baryon mean-fields in asymmetric nuclear matter
- New effect: Λ - Σ mixing induced by the nuclear isovector mean-field
- Summary and outlook

H. Lenske, M. Dhar, EPJ Web Conf. 271 (2022) 05003 (Hyp 2022, Prague), 2208.04916 [nucl-th]

Theoretical Background:

H. Lenske, M. Dhar, *Lect.Notes Phys. 948 (2018) 161* H. Lenske, M. Dhar, Th. Gaitanos, Xu Cao, *Prog.Part.Nucl.Phys.* 98 (2018) 119

SU(3) Scheme of Octet Baryon Interactions

The Octet/Nonet Mesons

Lagrangian Density of BB-Octet Interactions

$$\mathcal{L}_{int}^{\mathcal{P}} = -\sqrt{2} \left\{ g_D \left[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_8 \right]_D + g_F \left[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_8 \right]_F \right\} - g_S \frac{1}{\sqrt{3}} \left[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_1 \right]_S$$

P=Pseudoscalar, Vector, and Scalar Meson Exchange

anti–symmetric $[\overline{B}, B] = \overline{B}B - B\overline{B}$ and symmetric $\{\overline{B}, B\} = \overline{B}B + B\overline{B}$ configurations $[\overline{B}BP]_D = \operatorname{Tr}(\{\overline{B}, B\}P_8)$, $[\overline{B}BP]_F = \operatorname{Tr}([\overline{B}, B]P_8)$, $[\overline{B}BP]_S = \operatorname{Tr}(\overline{B}B)\operatorname{Tr}(P_1)$

Octet Baryon Physics:

3 sets of **3** Fundamental Coupling Constants {g_D,g_F,g_S} fix the in total **48** BB'M Vertices

BBM Vertices under Singlet-Octet Mixing: (mean-field producing) Vector Couplings

Vertex	Coupling constant
NNω	$g_N^{\omega} = g_S \cos(\theta) + \sqrt{\frac{3}{2}} g_F \sin(\theta) - \frac{1}{\sqrt{6}} g_D \sin(\theta)$
$NN\phi$	$g_N^{\phi} = g_S \sin(\theta) - \sqrt{\frac{3}{2}} g_F \cos(\theta) + \frac{1}{\sqrt{6}} g_D \cos(\theta)$
$NN\rho$	$g_N^{\rho} = \sqrt{2}(g_F + g_D)$
$\Lambda\Lambda\omega$	$g_{\Lambda}^{\omega} = g_S \cos(\theta) - \sqrt{\frac{2}{3}} g_D \sin(\theta)$
$\Lambda\Lambda\phi$	$g_{\Lambda}^{\phi} = g_{S} \sin(\theta) + \sqrt{\frac{2}{3}} g_{D} \cos(\theta)$
$\Sigma\Sigma\omega$	$g_{\Sigma}^{\omega} = g_S \cos(\theta) + \sqrt{\frac{2}{3}} g_D \sin(\theta)$
$\Sigma\Sigma\phi$	$g_{\Sigma}^{\phi} = g_{S} \sin(\theta) - \sqrt{\frac{2}{3}} g_{D} \cos(\theta)$
$\Sigma\Sigma ho$	$g^{ ho}_{\Sigma} = \sqrt{2}g_F$
$\Lambda\Sigma ho$	$g^{\rho}_{\Lambda\Sigma} = \sqrt{\frac{2}{3}}g_D$
ΞΞω	$g_{\Xi}^{\omega} = g_S \cos(\theta) - \sqrt{\frac{3}{2}} g_F \sin(\theta) - \frac{1}{\sqrt{6}} g_D \sin(\theta)$
$\Xi\Xi\phi$	$g_{\Xi}^{\phi} = g_S \sin(\theta) + \sqrt{\frac{3}{2}} g_F \cos(\theta) + \frac{1}{\sqrt{6}} g_D \cos(\theta)$
$\Xi \Xi ho$	$g_{\Xi}^{\rho} = \sqrt{2}(g_F - g_D)$

Guiding Principles for a SU(3) DFT Mean-Field Dynamics

- Interactions inherit SU(3) symmetry from NN (BB) scattering data
- Incorporate SU(3)-breaking by use of physical masses and empirical coupling constants
- Free space, in-medium Bethe-Salpeter, and vertex equations conserve the fundamental symmetries

The SU(3) DFT/EDF Program:

- Three in-medium couplings are needed to fix the scalar and vector sets of {g_D,g_F,g_S}
- For known $g_{NN\omega}(\rho)$, $g_{NN\rho}(\rho)$ and imposing $g_{NN\phi}(\rho)=0 \rightarrow \text{vector } g_D(\rho)$, $g_F(\rho)$, $g_S(\rho)$
- For known $g_{NN\sigma}(\rho)$, $g_{NN\delta}(\rho)$ and imposing $g_{NN\sigma'}(\rho) = 0 \rightarrow \text{scalar } g_D(\rho)$, $g_F(\rho)$, $g_S(\rho)$
- Fix the mixing angle ideal mixing $tan(\theta)=1/\sqrt{2}$ ($\theta \sim 35^{\circ}$)
- → SU(3) BBM vector and scalar mean-field couplings

Covariant SU(3) Density Functional

$$\begin{split} \mathcal{L}_{\text{int}}^{\text{DF}} &= -\sqrt{2} \sum_{\mathcal{M} \in \{\mathcal{P}, \mathcal{S}, \mathcal{V}\}} \left\{ g_{D}^{*(\mathcal{M})}(\hat{\rho}) \big[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_{8} \big]_{D} + g_{F}^{*(\mathcal{M})}(\hat{\rho}) \big[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_{8} \big]_{F} - g_{S}^{*(\mathcal{M})}(\hat{\rho}) \frac{1}{\sqrt{6}} \big[\overline{\mathcal{B}} \mathcal{B} \mathcal{P}_{1} \big]_{S} \right\} \\ \hat{\rho} &= F(j_{\mu} j^{\mu}) \end{split} \\ \begin{array}{l} \textbf{Meson and Baryon Field Equations:} \\ \left(\partial_{\mu} \partial^{\mu} + m_{\mathcal{M}}^{2} \right) \Phi_{\mathcal{M}}^{s} &= \sum_{BB'} g_{BB'\mathcal{M}}^{*}(\hat{\rho}) \rho^{BB's}, \qquad \left(\partial_{\mu} \partial^{\mu} + m_{\mathcal{M}}^{2} \right) V_{\mathcal{M}}^{\lambda} &= \sum_{BB'} g_{BB'\mathcal{M}}^{*}(\hat{\rho}) \rho^{BB'\lambda} \\ \left(\gamma_{\mu} \left(p^{\mu} - \Sigma_{\mathcal{B}}^{\mu}(\hat{\rho}) \right) - M_{\mathcal{B}} + \Sigma_{\mathcal{B}}^{(s)}(\hat{\rho}) \right) \Psi_{\mathcal{B}} = 0 \,. \end{split}$$

Evaluated in mean-field approximation

$$\begin{split} \Phi &= \left\langle 0 \middle| \Phi \middle| 0 \right\rangle + \delta \Phi \hspace{0.2cm} ; \hspace{0.2cm} V^{\mu} = \left\langle 0 \middle| V^{\mu} \middle| 0 \right\rangle + \delta V^{\mu} \hspace{0.2cm} ; \hspace{0.2cm} \hat{\rho} = \left\langle 0 \middle| \hat{\rho} \middle| 0 \right\rangle + \delta \rho \hspace{0.2cm} ; \hspace{0.2cm} g_{BB'M}^{*} \left(\hat{\rho} \right) = g_{BB'M}^{*} \left(\rho_{B} \right) + \delta \rho \frac{\partial g_{BB'M}^{*} \left(\rho_{B} \right)}{\partial \rho_{B}} \\ \varphi &= \left\langle 0 \middle| \Phi \middle| 0 \right\rangle \hspace{0.2cm} ; \hspace{0.2cm} V^{0} = \left\langle 0 \middle| V^{\mu} \middle| 0 \right\rangle \delta^{\prime \mu \, 0} \hspace{0.2cm} ; \hspace{0.2cm} \rho_{B} \equiv \left\langle 0 \middle| \hat{\rho} \middle| 0 \right\rangle \hspace{0.2cm} ; \hspace{0.2cm} \delta \rho = \hat{\rho} - \rho_{B} \end{split}$$

The Practicioneer's Approach

Covariant Nuclear EDF from DBHF Interactions

H.L., Lect. Notes Phys. 641 (2004) 147; PPNP 98 (2018) 119

GI-DBHF SU(3) Vertices in Infinite Nuclear Matter Ideal Mixing: θ=35.26°

SU(3) Baryon Mean-Fields

Hyperon Couplings and "Quark Scaling"

In-Medium Quark Scaling Hypothesis recovered for $Y(\Lambda\Sigma)=0$ and $Y(\Xi)=-1$ Hypercharge-Multiplets

$\Lambda\text{-}\Sigma$ Mixing by Isovector Interactions

$$\mathcal{L} = \sum_{b=\Lambda,\Sigma} \bar{\psi}_b \left(\gamma_\mu \left(p^\mu + V_b^\mu \right) - M_b - \phi_b \right) \psi_b + \bar{\psi}_\Lambda U_{\Lambda\Sigma} \psi_\Sigma + h.c.$$

$$U_{\Lambda\Sigma} = \left(\left[g_{\Lambda\Sigma\delta} \phi_{\delta} \right] + g_{\Lambda\Sigma\rho} \gamma_{\mu} \mathbf{V}_{\rho}^{\mu} \right] \cdot \boldsymbol{\tau}_{\Lambda\Sigma}$$

 Λ - Σ Mixing inAsymmetric Nuclear Matter Induced by the Static Isovector Mean-Field

$$\begin{array}{c|c} N & \Sigma \\ & \delta \pi \rho \\ N & \Lambda \end{array} \longrightarrow 0 \begin{array}{c} \delta \swarrow \rho \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\$$

$$U_{\Lambda\Sigma}(\rho_B) = U_{\delta}^{(NN)}(\rho_B) \left(\frac{g_{\Lambda\Sigma\delta}}{g_{NN\delta}}\right) + U_{\rho}^{(NN)}(\rho_B) \left(\frac{g_{\Lambda\Sigma\rho}}{g_{NN\rho}}\right)$$

Mean-Field Induced Mixing

$$\begin{pmatrix} H_{\Lambda A} - E & U_{\Lambda \Sigma} \\ U_{\Lambda \Sigma}^{\dagger} & H_{\Lambda A} + m_{\Sigma \Lambda} - E \end{pmatrix} \begin{pmatrix} \left[\phi_{\Lambda} \otimes \left| A \right\rangle \right]_{I_{A} N_{A}} \\ \left[\phi_{\Sigma} \otimes \left| A \right\rangle \right]_{I_{A} N_{A}} \end{pmatrix} = \mathbf{0}$$

$\Lambda - \Sigma$ Mean-Field Mixing SU(3) Potential in Asymmetric Nuclear Matter

In-Medium $\Lambda \!-\! \Sigma$ Mixing and the Λ Lifetime τ_{Λ}

H. Lenske, SU(3) DFT, Trieste 2023

 Λ and Σ Self-Energies Induced by the Isovector Mean-Field

Neutron Stars

GiEDF Results for Neutron Stars – Fit to Hypernuclei and SU(6)

Simulating YYN/YYY Repulsion Exploratory SU(3)-EDF Study of a Neutron Star

Looking inside a Neutron Star

Gi-DHBF EDF Standard Scenario: Hyperon core in a neutron star

Tomography by Gravitational Waves?

Hang Yu, N.N. Weinberg (MIT) *Mon.Not.Roy.Astron.Soc.* 470 (2017) 1, 350: "Hyperonic Gradients lead to small Phase shifts ~10⁻³ rad"

> SU(3)-EDF with repulsive YYN/YYY TBI: Hyperon shell in a neutron star

Summary and Outlook

- Octet BB interactions in the SU(3) scheme
- Derivation of a SU(3)-based EDF directly from NN interactions
- "Quark Scaling" in Y=0,-1 (S=-1,-2) hypercharge multiplets
- $\Lambda \Sigma$ mixing induced by the isovector mean-field
- to come: $\Lambda \Sigma$ mixing induced by dynamical self-energies
- to come: neutron star EoS and mass-radius relation

H. Lenske, M. Dhar, EPJ Web Conf. 271 (2022) 05003, 2208.04916 [nucl-th]

Supported in part by EMMI and DFG grant Le439-16