
Hyperon-nucleon interaction and light
hypernuclei

Johann Haidenbauer

IAS, Forschungszentrum Jülich, Germany

EMMI Workshop, Trieste, Italy, July 3 - 6, 2023

(Hoai Le, Ulf-G. Meißner, Andreas Nogga)

Johann Haidenbauer Hyperon-nucleon interaction



Outline

1 Introduction

2 YN interaction in chiral effective field theory

3 Light Λ hypernuclei

4 Summary

Johann Haidenbauer Hyperon-nucleon interaction



Hyperon physics - recent developments

Role of hyperons in neutron stars (“hyperon puzzle”)
Neutron stars with masses ≥ 2M� ⇒ stiff equation of state (EoS)
With increasing density n→ Λ⇒ softening of the EoS
⇒ Conventional explanations of observed mass-radius relation fail

New measurements of Λp cross sections by the CLAS
Collaboration at JLab
New extended measurements of ΣN observables in the E40
experiment at J-PARC
differential cross sections for Σ+p, Σ−p

Measurements of two-particle momentum correlation functions
by the STAR, HADES, and ALICE Collaborations
(Λp, ΛΛ, Ξ−p, ...)

HAL QCD: Lattice QCD simulations for YN interactions for quark
masses close to the physical point (Mπ ≈ 145 MeV)

Progress in ab initio methods like no-core shell model (NCSM)
microscopic calculations of hypernuclei up to A ≥ 10

Nuclear lattice effective field theory including the Λ hyperon
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BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χEFT à la Weinberg (1990)

Advantages:

Power counting
systematic improvement by going to higher order

Possibility to derive two- and three-baryon forces and external
current operators in a consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar
mesons (π, K , η)

• pseudoscalar-meson exchanges
• contact terms – represent unresolved short-distance dynamics

involve low-energy constants (LECs) that need to be fixed
by a fit to data

ΛN-ΣN interaction
LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91
SMS NLO, NNLO: J.H., U.-G. Meißner, A. Nogga, H.Le, EPJA 59 (2023) 63

(BB systems with strangeness S = −1 to−6)
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Extension of chiral EFT interaction up to NNLO

(Nucleon-nucleon forces in chiral EFT (E. Epelbaum))
4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

N2LO: no new (additional) LECs in the two-body sector

leading-order three-body forces (3BFs)

Johann Haidenbauer Hyperon-nucleon interaction



NN interaction in chiral EFT
Semilocal momentum-space (SMS) regularized chiral NN potential
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(Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86) [up to N4LO (N4LO+) !!]

LO to NLO: drastic change in all partial waves

NLO to N2LO: changes mostly in P-waves and higher partial waves
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Results for SMS chiral YN interactions
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p

SMS YN potentials up to NLO, NNLO (with Λ = 550 MeV)
(J.H., U.-G. Meißner, A. Nogga, H. Le, EPJ A 59 (2023) 63)

NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ2 (36 data points):
NLO19(600): 16.0 SMS NLO: 15.2 SMS NNLO: 15.6

cross sections dominated by S-waves (are already well described at NLO)
→ (as expected) practically no change when going to NNLO
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Results for SMS YN interactions
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integrated cross sections at higher energies not included in the fitting process!

Σ+p → Σ+p and Σ−p → Σ−p cross sections:

σ =
2

cos θmax − cos θmin

∫ cos θmax

cos θmin

dσ(θ)

d cos θ
d cos θ

cos θmin = −0.5; cos θmax = 0.5

fss2 ... Fujiwara et al. (constitutent quark model) Jülich 04, Nijmegen NSC97f ... meson-exchange potentials
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Results for SMS YN interactions
Σ+p (T. Nanamura et al., PTEP 2022 (2022) 093D01)
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LECs in the 1S0, 3S1-3D1 fixed from low-energy cross sections

SMS NLO: LECs in 3P-waves taken over from NN fit (RKE)
(strict SU(3) symmetry: VNN ≡ VΣ+p in the 1S0, 3P0,1,2 partial waves!)

SMS NNLO: LECs in P-waves fitted to the E40 data (two examples)!

data for (550 ≤ p ≤ 650) MeV/c are overestimated (influence of Λpπ+ threshold?)
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Results for SMS YN interactions
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Σ−p → Λn: quite well reproduced by NLO19 (NLO13) and SMS YN potentials
Σ−p → Σ−p: behavior at forward angles remains unclear

Σ−p and Σ−p → Λn data for (550 ≤ p ≤ 650) MeV/c are reproduced with comparable
quality

• no unique determination of all P-wave LECs possible
• one needs data from additional channels (Λp, Σ−p → Σ0n, ...)
• one needs additional differential observables (polarizations, ...)
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Hypernuclei within the NCSM
ab initio no-core shell model (NCSM)

Basic idea: use harmonic oscillator states and soft interactions
m-scheme uses single particle states (center-of-mass motion not separated)

antisymmetrization for nucleons easily performed (Slater determinant)

larger dimensions (applications to p-shell hypernuclei by Wirth & Roth)

Jacobi-NCSM
uses relative (Jacobi) coordinates (Hoai Le et al., EPJA 56 (2020) 301)

explicit separation of center-of-mass motion possible

antisymmetrization for nucleons difficult but feasible for A ≤ 9

small dimensions

Soft interactions: Similarity renormalization group (SRG) (unitary transformation)

dH(s)

ds
= [[T ,H(s)],H(s)] H(s) = T + V (s) V (s) : V NN (s), V YN (s)

Flow equations are solved in momentum space

parameter (cutoff) λ =
(

4µ2
BN/s

)1/4
is a measure of the width of the interaction in momentum space

V (s) is phase equivalent to original interaction

transformation leads to induced 3BFs, 4BFs, ...

(induced 3BFs included in the work of Wirth & Roth and in our recent studies)
(induced 4BFs are most likely very small)
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Procedure

slide from Hoai Le:

7

Extrapolation in  and  spaces:ω 𝒩

‣ Eb(ω, 𝒩) = E𝒩 + κ(log(ω) − log(ωopt))2 ‣ E𝒩 = E∞ + Ae−b𝒩

4He

E𝒩

δE = E∞ − E𝒩max

‣ lowest are used for -space extrapolation  E𝒩,ωopt
𝒩

• extrapolation of energies:

‣ estimated uncertainties are rather conservative 

EFY = − 27.15 ± 0.02

E∞ = − 27.146 ± 0.062

MeV

MeV

• extrapolation of  separation energies: Λ BΛ = Enucl − Ehyp

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 (2020)

NN: SMS N4LO+(450)

BΛ,𝒩 = Enucl(𝒩) − Ehypnucl(𝒩)

BΛ,𝒩 = BΛ,∞ + A1e−b1𝒩

YN: SMS N2LO(550)‣ strong correlations between Enucl(𝒩), Ehypnucl(𝒩)

λ = 7 fm−1

λYN = 7 fm−1
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Results for BΛ(A ≤ 8)

Hoai Le et al., PRC 107 (2023) 024002

13

Impact of YN interactions on BΛ(A ≤ 8)
• NLO13 and NLO19 are almost phase equivalent in the 2-body sector

• NLO13 characterised by a stronger  transition potential (especially in )  ΛN − ΣN 3S1
(J. Haidenbauer et al. NPA 915 (2019))manifest in higher-body observables 

 are fairly well described by NLO19;

NLO13 has a tendency to underestimate these systems

4
ΛH(1+), 5

ΛHe, 7
ΛLi, 8

ΛLi

M. Juric NPB 52(1973) 
M. Agnello et al. PLB 681(2009)

Experiment:

reproduced experimental values for hypertrition. The two potentials predict similar B_L for the ground state of 4HL, both

 underestimates the system. And, similarly, the NLO13 potential underbids the excited state in 4HL, the grounds states in 

?
Count.

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN
+YN: NLO13,19(CSB)

NLO13 underestimates separation energies

signal for (missing) chiral YNN forces
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Charge symmetry breaking in the ΛN interaction

J.H., U.-G. Meißner, A. Nogga, FBS 62 (2021) 105

15

CSB contributions to YN interactions

3He
1/2+

4
ΛH

(J. Haidenbauer, U.-G. Meißner  and A. Nogga FBS 62(2021))

is much larger than the one in the triplet.

4 Johann Haidenbauer et al.
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Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1],
due to ⇤�⌃0 mixing (left two diagrams) and ⇡0 � ⌘ mixing (right diagram).
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Fig. 2 CSB contributions from K±/K0 exchange (left) and from contact terms (right).

and subsumed in terms of an e↵ective ⇤⇤⇡ coupling constant

f⇤⇤⇡ =


�2

h⌃0|�m|⇤i
m⌃0 � m⇤

+
h⇡0|�M2|⌘i
M2

⌘ � M2
⇡0

�
f⇤⌃⇡ . (2)

Based on the latest PDG mass values [29], one obtains

f⇤⇤⇡ = f
(⇤�⌃0)
⇤⇤⇡ + f

(⌘�⇡0)
⇤⇤⇡ ⇡ (�0.0297 � 0.0106) f⇤⌃⇡ . (3)

In this context, let us mention that there are also lattice QCD calculations of
⇤�⌃0 mixing [30–33].

In our implementation of CSB within chiral EFT, we follow closely the ar-
guments given in pertinent studies of isospin-breaking e↵ects in the nucleon-
nucleon (NN) system, see Refs. [26–28]. According to Ref. [27], the CSB contribu-
tions at leading order are characterized by the parameter ✏M2

⇡/⇤2 ⇠ 10�2, where
✏ ⌘ md�mu

md+mu
⇠ 0.3 and ⇤ ⇠ M⇢. In particular, one expects a potential strength

of V CSB
BB ⇠ (✏M2

⇡/⇤2)VBB . At order n = 2 (NLØ in the notation of Ref. [28]),
there are contributions from isospin violation in the pion-baryon coupling con-
stant, which in the ⇤N case arise from the aforementioned ⌃0 � ⇤ mixing as well
as from ⇡0 �⌘ mixing. In addition, there are contributions from short range forces
(arising from ⇢0 � ! mixing, etc.). In chiral EFT, such forces are simply repre-
sented by contact terms involving LECs (Fig. 2 right) that need to be fixed by a
fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction
between the baryons in question and due to mass di↵erences between M⇡± and
M⇡0 . Such contributions do not arise in the ⇤N system. However, in the extension
to SU(3), there is CSB induced by the MK± -MK0 mass di↵erence, see left side of
Fig. 2. We take that into account in our calculation, since it is formally at leading
order. But because the kaon mass is rather large compared to the mass di↵erence,
its e↵ect is actually very small. For a general overview, we refer the reader to
Table I in Ref. [28].

• sub-leading contributions are more important: 
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Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to Λ − "0 mixing (left two
diagrams) and π0 − η mixing (right diagram).

Fig. 2 CSB contributions from K±/K 0 exchange (left) and from contact terms (right)

2.2 CSB in Chiral EFT

As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
contribution to the ΛN interaction due to pion exchange, see Fig. 1. The strength of the potential can be
estimated from the electromagnetic mass matrices,

〈"0|δm|Λ〉 = [m"0 − m"+ + mp − mn]/
√

3,

〈π0|δM2|η〉 = [M2
π0 − M2

π+ + M2
K+ − M2

K 0 ]/
√

3 (1)

and subsumed in terms of an effective ΛΛπ coupling constant

fΛΛπ =
[

−2
〈"0|δm|Λ〉
m"0 − mΛ

+ 〈π0|δM2|η〉
M2

η − M2
π0

]

fΛ"π . (2)

Based on the latest PDG mass values [29], one obtains

fΛΛπ = f (Λ−"0)
ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter εM2

π/Λ
2 ∼ 10−2, where

ε ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (εM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering 

(Dalitz, van Hippel, 1964)
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering 

‣ effective CSB  coupling constantΛΛπ

‣ two contact interactions  adjusted to A=4 CSBCCSB
s , CCSB

t
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Table 3 Probability of finding ⇤p and ⇤n pairs in the A=4-8 wavefunctions computed using
the YN NLO19(500) potential. The SRG-induced YNN interaction is also included in the
calculations for 4

⇤He/4
⇤H. The A=7,8 wavefunctions were computed at the magic SRG-flow

parameter of �magic = 0.823 fm-1

1S0
3S1 hV Y N i

⇤p ⇤n ⇤p ⇤n 1S0
3S1

4
⇤He(0+) 13.92 27.60 44.54 0.42 -4.383 -3.916
4
⇤H(0+) 27.1 13.66 0.41 43.79 -4.091 -3.604

4
⇤He(1+) 14.48 13.44 42.47 27.07 -1.383 -5.743
4
⇤H(1+)

7
⇤Be 11.13 7.22 33.25 21.67 -3.728 -9.36
7
⇤Li⇤ 9.17 9.17 27.44 27.44 -3.767 -9.319

8
⇤Be 9.49 12.23 28.68 19.34 -5.467 -9.848
8
⇤Li

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5

⇤He, B⇤(5⇤He, NLO13) = 2.22±0.06

and B⇤(5⇤He, NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a⇤p
s a⇤n

s �as a⇤p
t a⇤n

t �at

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01

no CSB

CSB(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11

CSB(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11

CSB(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09

CSB(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09

4.2 NCSM results for A=7

Table ?? provides selected results for the separation energies of the 1/2+ mirror
hypernuclei 7

⇤He, 7
⇤Li⇤, and 7

⇤Be, without CSB. The chiral and SRG-induced 3N
as well as the SRG-induced YNN interactions are included in the calculations.
In Table ?? we provide the separation energies for the A=7 isotriplet computed
using the NN interaction N4LO + (450) in combination with the YN potentials
NLO13(500) and NLO19(500), SRG-evolved to the respective magic SRG-flow pa-
rameters for which the 5

⇤He separation energy agrees with the full result including
the SRG-induced YNN force.

Table ?? provides an overview of results for CSB1, when the full 3N and
the SRG-induced YNN interactions are taken into account. Table ?? provides

• leading contributions are small  
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CSB contributions  to YN interactions
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As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
contribution to the ΛN interaction due to pion exchange, see Fig. 1. The strength of the potential can be
estimated from the electromagnetic mass matrices,
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ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter εM2

π/Λ
2 ∼ 10−2, where

ε ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (εM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
because the kaon mass is rather large compared to the mass difference, its effect is actually very small. For a
general overview, we refer the reader to Table 1 in Ref. [28].
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering 

= 233 ± 92 keV

ΔBΛ(4
ΛHe − 4

ΛHe; 0+) = 233 ± 92 keV

(Schulz et al. (2016); Yamamoto et al. (2015))   is independent of cutoff and of YN potentialsa(Λn)
ΔBΛ(4

ΛHe − 4
ΛHe; 1+) = −83 ± 94 keV

((mK0 − mK±)/mK ≪ 1)

Johann Haidenbauer Hyperon-nucleon interaction



CSB results for A=4,7,8 hypernuclei

Hoai Le, J.H., U.-G. Meißner, A. Nogga, PRC 107 (2023) 024002
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CSB results in A=4-8

3He
1/2+

4
ΛH

• NLO13 & NLO19 CSB results for A=7 are comparable to experiment.     

• two potentials predict a somewhat larger CSB in A=8 doublet as compared to experiment 

‣ experimental CS splitting for A=8 could be larger than  keV?40 ± 60
‣  CSB estimated for A=4 could still be too large or have different spin-dependence?

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023)


NN:SMS +(450)N4LO

+3N: (450)N2LO

+YN: NLO13,19(CSB)

+SRG-induced YNN

• CSB estimate for A = 4 too large? different spin-dependence?

Johann Haidenbauer Hyperon-nucleon interaction



Consider new Star measurement

STAR Collaboration (M. Abdallah et al.), PLB 834 (2022) 137449
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Fitting LECs to new Star measurement

3He
1/2+

4
ΛH

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+)

= 233 ± 92 keV ⇒ (CSB)

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+)

= − 83 ± 94 keV ⇒ (CSB)

= − 160 ± 140 ± 100 keV ⇒ (CSB*)

= 160 ± 140 ± 100 keV ⇒ (CSB*)

 STAR Collaboration PLB 834 (2022)*
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Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54 ± 0.22 4.30 ± 0.47 5.44 ± 0.03 4.53 ± 0.34 5.16 ± 0.08
7
⇤Li⇤ 5.64 ± 0.28 4.42 ± 0.58 5.49 ± 0.04 4.59 ± 0.34 5.26 ± 0.03 5.53 ± 0.13
7
⇤He 5.64 ± 0.27 4.39 ± 0.54 5.43 ± 0.06 4.45 ± 0.35 5.55 ± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54 ± 0.22 4.30 ± 0.47 5.16 ± 0.08

7
⇤Li⇤ 5.64 ± 0.28 4.42 ± 0.58 5.26 ± 0.03 5.53 ± 0.13

7
⇤He 5.64 ± 0.27 4.39 ± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-7⇤Li and
0.13 MeV for 7

⇤Li-7⇤He according to the figures (0.2 MeV according to the text).
However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

*

How does the STAR measurement affect the predictions of CSB in A=7,8 multiplets ? 

Recent Star measurement suggests somewhat different CSB in A=4:

 increases while  decreasesδa(1S0) δa(3S1)
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Impact of Star measurement on CSB in A=7,8

19

3He
1/2+

4
ΛH

• CSB in A=4( ) and A=8, and in A=4( ) and A=7 are correlated0+ 1+

star measurement 

Impact of Star measurement on CSB in A=7,8

λNN = 1.6 fm−1

λopt
YN = 0.823 fm−1

NN:SMS +(450)N4LO

  +YN: NLO13,19(CSB)

BΛ(5
ΛHe, λopt

YN ) = BΛ(5
ΛHe,3BFs)

accurate CSB in A=7 & 8 systems will allow for an independent check of A=4 CSB

• CSB* fit predicts reasonable CSB in both A=7 and A=8 systems 
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Separation energies for A=3-8 Λ hypernuclei (MeV)
• NLO13(19), SMS NLO,N2LO are phase equivalent (χ2 ≈ 16 for 36 YN data points)
• NLO13 characterized by a stronger ΛN-ΣN coupling potential (3S1-3D1)

3
ΛH [Faddeev] 4

ΛHe(0+) 4
ΛHe(1+) 5

ΛHe 7
ΛLi 8

ΛLi

NLO13 0.090 1.48± 0.02 0.58± 0.02 2.22± 0.06 5.28± 0.68 5.75± 1.08

NLO19 0.091 1.46± 0.02 1.06± 0.02 3.32± 0.03 6.04± 0.30 7.33± 1.15

SMS NLO 0.124 2.10± 0.02 1.10± 0.02 3.34± 0.01

SMS N2LO 0.139 2.02± 0.02 1.25± 0.02 3.71± 0.01

Exp.∗ 0.148± 0.04 2.347± 0.036 0.942± 0.036 3.102± 0.03 5.85± 0.13 6.80± 0.03

5.58± 0.03

NN: SMS N4LO+(450) + 3NF: N2LO(450) + SRG-induced YNN force

NLO19 (600): 4
ΛHe(1+), 5

ΛHe, 7
ΛLi fairly well described

NLO13 (600) underestimates the separation energies
SMS NLO,N2LO (550): 4

ΛHe(0+, 1+), 5
ΛHe fairly well described

chiral YNN forces appear at N2LO→ ΛNN: 5 LECs
with decuplet saturation at NLO (LECs: 1 ΛNN + 1 ΣNN)
→ could be fixed from separation energies of, e.g.,
4
ΛHe (0+, 1+) or 4

ΛHe (0+, 1+), 5
ΛHe

∗Chart of Hypernuclides https://hypernuclei.kph.uni-mainz.de/
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Uncertainty quantification

Uncertainty for a given observable X(p):
(Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)

(S. Binder et al. [LENPIC coll.], PRC 93 (2016) 044002)

estimate uncertainty via

• the expected size of higher-order corrections
• the actual size of higher-order corrections

∆XLO = Q2|XLO | (XNLO ≈ Q2XLO )

∆XNLO = max
(

Q3|XLO |,Q1|δXNLO |
)

; δXNLO = XNLO−XLO

∆XN2LO = max
(

Q4|XLO |,Q2|δXNLO |,Q1|δXN2LO |
)

; δXN2LO = XN2LO−XNLO

∆XN3LO = max
(

Q5|XLO |,Q3|δXNLO |,Q2|δXN2LO |,Q1|δXN3LO |
)

; δXN3LO = XN3LO−XN2LO

expansion parameter Q is defined by

Q = max

(
p

Λb
,

mπ
Λb

)
; p ... Λp on− shell momentum

Λb ... breakdown scale→ Λb = 500− 600 MeV [for R = 0.8− 1.2 fm] (EKM, 2015)

Johann Haidenbauer Hyperon-nucleon interaction



Estimate of truncation error (preliminary!)
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• filled symbols: actual estimates for SMS LO, NLO, N2LO YN potentials
• opaque symbols: anticipated results when YNN 3BFs are included

• 3
ΛH: used as constraint! Conclusions on true uncertainty are not possible

• Q: Q = Meff
π /Λb ≈ 200/650 (Epelbaum et al., for light nuclei)
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Summary

Hyperon-nucleon interaction within chiral EFT

ΛN-ΣN interaction within semilocal momentum-space regularized chiral EFT
confirm our previous YN results (up to NLO) based on a nonlocal regulator
successful extension to NNLO
new Σ±p differential cross sections around plab ≈ 500 MeV/c can be described
unique determination of the P-waves is not yet possible

Hypernuclei

three-body forces: should be small for (3
ΛH) or moderate (4

ΛH, 4
ΛHe, 5

ΛHe)
needs to be quantified/confirmed by explicit inclusion of 3BFs

charge-symmetry breaking in 4
ΛH – 4

ΛHe
can be reproduced when taking into account the full leading CSB potential within
chiral EFT

charge-symmetry breaking in A = 7− 8 Λ-hypernuclei
predicted CSB splitting for 7

ΛBe, 7
ΛLi∗, 7

ΛHe is in line with experiments
CSB splitting for 8

ΛBe, 8
ΛLi is overestimated

Λp momentum correlation functions

ALICE measurement: indications that the Λp is possibly somewhat weaker than
what the cross section data from the 1960ies suggest (D. Mihaylov, M. Korwieser)
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