

Four body force in Pionless Effective Field Theory

Mirko Bagnarol

Hebrew University of Jerusalem Racah Institute of Physics

4th July 2023

- Quantum Chromodynamics (QCD) is the established fundamental theory of the strong interaction. At low energies ($E \leq 200$ MeV) it is not perturbative.
- Two approaches:
 - □ Solve the Lagrangian by brute force, regardless of the cost \Rightarrow Lattice QCD (LQCD)
 - \Box Work with more appropriate low-energy degrees of freedom \Rightarrow Effective Field Theory (EFT)
- We employ Pionless EFT (#EFT), where the the degrees of freedom are the nucleons and the pions are integrated out

#EFT interaction

Hebrew University of Jerusalem

#EFT

Without pions, our Leading Order (LO) interaction is a contact interaction:

$$V_{\text{LO, 2B}}(\vec{r}) = C_{S,I}\delta(\vec{r})$$
$$V_{\text{LO, 3B}}(\vec{r}_{ij}, \vec{r}_{jk}) = D_{S,I}\delta(\vec{r}_{ij})\delta(\vec{r}_{jk})$$

- The promotion of a repulsive three body force at LO prevents the Thomas collapse
- In order to numerically solve Schrödinger's equation, we have to smear the Dirac delta, introducing the cutoff Λ

$$\delta_{\Lambda}(\vec{r}) = e^{-\frac{\Lambda^2 r^2}{4}}$$

١

Our Next to LO (NLO) interaction has momentum dependent two-body terms, three counterterms and a four-body force:

$$V_{\text{NLO, 2B}} = C_{S,I} \nabla^2 \delta(\vec{r})$$

$$V_{\text{NLO, counter}} = C_{S,I} \delta_{\Lambda}(\vec{r}) + D_{S,I} \delta(\vec{r}_{ij}) \delta(\vec{r}_{jk})$$

$$V_{\text{NLO, 4 Body}} = E_{S,I} \prod_{ab \in \text{pairs}} \delta_{\Lambda}(\vec{r}_{ab})$$

- The momentum dependent terms introduce an effective range to the interaction
- The counterterms have the same form of the LO terms and serve to keep the LO observables reproduced at NLO

Inclusion of the four body force

האוניברסיטה העברית בירושלים the Hebrew UNIVERSITY OF JERUSALEM

Hebrew University of Jerusalem

- The inclusion of the four body force at NLO is necessary and sufficient for the renormalization at this order.
- It was found by *B. Bazak et al.* in 2018 studying 4 to 6 boson systems. They conjectured the necessity of an A-3 force at N^{A-3}LO!

#EFT

- Between LO and NLO, out model has six parameters fixed to few body observables:
 - LO: $a_{nn}^{0} = -18.95 \text{ fm}$ $B(^{2}\text{H}) = 2.2246 \text{ MeV}$ $B(^{3}\text{H}) = 8.482 \text{ MeV}$ NLO: $r_{nn}^{0} = 2.75 \text{ fm}$ $r_{np}^{1} = 1.753 \text{ fm}$ $B(^{4}\text{He}) = 28.3 \text{ MeV}$
- NLO interaction is included perturbatively to circumvent the Wigner bound

- We applied our interaction to ${}^{4}\text{He}+n$ scattering in the ${}^{2}\text{S}_{1^{+}}$ channel
- We confined our system in an harmonic potential and used the Busch formula to extract the scattering parameters, a₀ and r_{eff}
- We solved the Schrödinger equation with the Stochastic Variational Method (SVM)

Busch formula's idea

⁴He+n at NLO

Hebrew University of Jerusalem

⁴He+n at NLO

We apply the Busch formula in order to extract the free space scattering parameters (scattering length a₀ and effective range r_{eff})

$$k \cot \delta_0 = -2\sqrt{\mu\omega} \frac{\Gamma\left(\frac{3}{4} - \frac{E}{2\hbar c\omega}\right)}{\Gamma\left(\frac{1}{4} - \frac{E}{2\hbar c\omega}\right)}$$

The effective range expansion (ERE) gives us the scattering parameters

$$k\cot\delta_0pproxrac{1}{a_0}+rac{1}{2}r_{
m eff}k^2$$

The Busch formula relates trapped energies (solvable with bound state methods like SVM) with free space, untrapped scattering parameters

- The Busch formula includes a Gamma ratio: it needs very high energy accuracy to give reliable results, below 10⁻² MeV
- The harmonic constant ω has to be as low as possible, in order to well separate the scales of the system
- The typical scale of ${}^{4}\text{He}+n$ is estimated as the scattering length $a \approx 2.5 \text{ fm}$

$$\hbar\omega=rac{\hbar^2}{\mu L^2}<$$
8 MeV

In practice, it has to be at most 2 MeV in order to have negligible trap effects

- Method to solve the Schrödinger equation standing on the variational principle, proposed by Suzuki and Varga in 1996
- The wave function is expanded as

$$|\Psi\rangle = \sum_{k=1}^{M} \alpha_k |\Phi_k\rangle$$

Each |Φ_k⟩ depends on some parameters, which are chosen randomly
 More and more states are added until convergence

SVM

SVM

The single basis state is expressed as a correlated Gaussian and an orbital, spin and isospin part

$$\begin{split} |\Phi\rangle &= \mathcal{A}(G(\mathcal{A})|c\rangle)\\ \langle \vec{x}|G(\mathcal{A})\rangle &= G(\vec{x},\mathcal{A}) = e^{-\frac{1}{2}\vec{x}^{\mathsf{T}}\mathcal{A}\vec{x}}\\ \langle \vec{x},\vec{s},\vec{I}|c\rangle &= \langle \vec{x},\vec{s},\vec{I}|(\mathcal{L}S)JM_JIM_I\rangle = [\varphi_L \otimes \varphi_S]_{J,M_J}\varphi_{I,M_I} \end{split}$$

- The Gaussian form of the wave function allows analytical calculations of matrix elements
- The spin and isospin parts are just coupling of the single spins

$$\varphi_{S,M_S} = |[\dots [[s_1 \otimes s_2]_{s_{12}} \otimes s_3] \cdots \otimes s_N]_{S,M_S}\rangle$$

In presence of multiple configurations, they are chosen randomly as well!

- The stochastic selection process eventually becomes too slow when the basis is big enough
- In order to reach the desired accuracy ad-hoc designed states can be generated
- We generated states that capture the 4 He core *n* dynamic as follows

$$A = egin{pmatrix} (3 imes3) & 0 \ 0 & rac{1}{(neta)^2} \end{pmatrix}$$

$$\exp\left(-\frac{1}{2}\vec{x}^{\mathsf{T}}A\vec{x}\right) = \exp\left(^{4}\mathsf{He core}\right)\exp\left(-\frac{1}{2}\frac{x_{4}^{2}}{(n\beta)^{2}}\right)$$

• The 3 \times 3 matrices are generated for ⁴He with SVM, β is an optimized parameter and *n* runs from 1 to 10

SVM

Convergence example

Hebrew University of Jerusalem

SVM

Phase shifts

Results

Hebrew University of Jerusalem

Scattering parameters

Hebrew University of Jerusalem

Results

*a*₀ in the literature

Results

Hebrew University of Jerusalem

r₀ in the literature

Hebrew University of Jerusalem

Results

Mirko Bagnarol

- We presented the pionless Effective Field Theory potential up to NLO for the L = 0 case
- We emphasized the importance of the inclusion of a four-body force at NLO for the renormalization of the theory
- We extracted the scattering parameters a₀ and r_{eff} with the Busch formula
- We got amazing results compared to the literature and to other more sophisticated models!

Thank you for your attention!

האוניברסיטה העברית בירושלים דוא HE HEBREW UNIVERSITY OF JERUSALEM

Hebrew University of Jerusalem

