Towards calibration of hyperon-nucleon interaction models using light hypernuclei

DANIEL GAZDA

Nuclear Physics Institute Řež/Prague

EMMI Workshop: Bound states and particle interactions in the 21st century, July 3 – 6, 2023, Trieste, Italy

Petr Navrátil TRIUMF, Canada

Christian Forssén

Chalmers University of Technology, Sweden

Axel Pérez-Obiol

Barcelona Supercomputing Center, Spain

Avraham Gal, Eli Friedman

The Hebrew University of Jerusalem, Israel

℀TRIUMF

Introduction & motivation

Strangeness physics

- Interdisciplinary field connecting particle physics, nuclear physics, and astrophysics
- One of its major goals is to understand the elusive interaction of hyperons with nucleons and the nuclear medium

Theoretical analysis of hypernuclei

- Using effective YN interaction models & mean-field / shell-model approaches – successful, difficult to link with the underlying free-space YN interaction, limited predictive power
- Using 'realistic' YN interaction models ...

Constraining YN interactions

- YN scattering 'pure' but very difficult to realize, sparse database with large uncertainties
- Heavy-ion collisions production and decays of light hypernuclei, correlation femtoscopy
- Final-state interactions in hyperon photoproduction
- ► Lattice QCD
- ► Hypernuclei precise spectroscopy

Introduction & motivation

Theoretical analysis of hypernuclei using realistic YN interactions

- Combines modern developments of YN interactions based on xEFT and ab initio few- and many-body approaches
- Computationally demanding
- Can reveal deficiencies of existing YN interaction models
- #EFT is successful in light hypernuclei

Calibration of YN interaction models using hypernuclei requires:

- Advanced 'ab initio' computational methods
- Quantified method uncertainties, σ_{method} associated with the solution of the many-body problem
- Quantified model uncertainties, σ_{model} associated with the choice of the nuclear interaction
- Overcoming the computational demands large number of evaluations
- Sensitivity analysis hypernuclear spectra might not be sensitive to certain parameters (LECs) of the YN interaction models
- Simultaneous fitting of other observables

Ab initio calculations of light hypernuclei

Ab initio calculations of light hypernuclei

Ab initio methods aim to solve solve the (hyper)nuclear many-body problem starting from 'realistic' (free-space) interactions exactly or with controlled approximations

Ab initio no-core shell model

[Navrátil et al., JPG 36, 083101 (2009); DG et al., FBS 55, 857 (2014); Wirth et al., PRL 113, 192502 (2014); Le et al., EPJA 56, 301 (2020)]

Quasi-exact method to solve the few- and many-body Schrödinger equation:

$$\left[\sum \frac{\hat{\mathbf{p}}_{i}^{2}}{2m_{i}}+\sum \hat{V}_{NN;ij}+\sum \hat{V}_{NNN;ijk}+\sum \hat{V}_{YN;ij}\right]\Psi=E\Psi$$

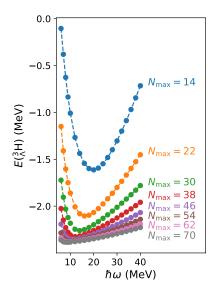
 Wave function is expanded and Hamiltonian is diagonalized in a finite A-particle harmonic oscillator (HO) basis

$$\Psi(\mathbf{r}_{1},\ldots,\mathbf{r}_{A})=\sum_{N\leq N_{max}}\Phi_{N,\omega}^{HO}(\mathbf{r}_{1},\ldots,\mathbf{r}_{A})$$

- Systematically improvable: converges to exact results for $N_{max} \rightarrow \infty$
- Input NN+NNN and YN interactions derived from χ EFT
 - The NNLO_{sim} family at NNLO [Carlsson et al., PRX 6, 011019 (2016)]
 - Jülich YN at LO [Polinder et al., NPA 779, 244 (2006)]

Ab initio calculations of light hypernuclei: method uncertainties

Method uncertainties associated with convergence of the solution of the many-body problem



- NCSM-calculated energies typically exhibit undesired dependence on the HO basis frequency ħω and truncation N_{max}
- Convergence properties of observables calculated in finite HO bases are rather well understood [Wendt et al., PRC 91, 061391 (2015)]
 - NCSM model-space parameters (N_{max}, ħω) recast into infrared (IR) and ultraviolet (UV) scales (L_{IR}, Λ_{UV})
 - In a regime with negligible UV corrections, IR corrections are universal

 $E(L_{\rm IR}) = E_{\infty} + a_0 \exp(-2\kappa_{\infty}L_{\rm IR}) + \cdots$

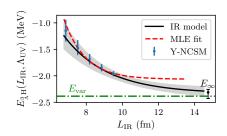
Ab initio calculations of light hypernuclei: method uncertainties

 Infrared extrapolation formulated as a Bayesian inference problem

$$\begin{split} \mathsf{E}(\mathsf{L}_{\mathsf{IR}}) &= \mathsf{E}_{\infty} + \Delta \mathsf{E}_{\mathsf{IR}} \exp(-2\kappa_{\infty}\Delta \mathsf{L}_{\mathsf{IR}}) \\ &\times \left(1 + \frac{\epsilon_{\mathsf{NLO}}}{\kappa_{\infty}(\mathsf{L}_{\mathsf{IR},\,\mathsf{max}} + \Delta \mathsf{L}_{\mathsf{IR}})}\right), \end{split}$$

with data $\mathcal{D} = \{E(L_{IR,i})\}$ calculated in different model spaces and $\vec{\epsilon}_{NLO} \sim N(0, \Sigma(\bar{\epsilon}, \rho))$ providing a stochastic model for the NLO energy correction [DG, Htun, Forssén, PRC 106, 054001 (2022)]

• Validation for $^{3}_{\Lambda}H$

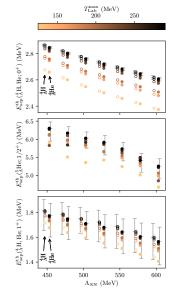


6

		B_{Λ}^{Exp} (MeV)	$B^{\mathrm{th}}_{\Lambda}$ (MeV)	
			median	68 % Cl _{method}
 Method uncertainty quantified by 68 % credible interval for the extrapolated energy E_∞ 	³ _Λ Η	0.165(44)	0.166	[-0.001, +0.001]
	_Λ H	2.157(77)	2.78	[-0.01, +0.01]
	⁴ ∧He	2.39(3)	2.76	[-0.01, +0.01]
	⁵ He	3.12(2)	6.03	[-0.28, +0.18]
	$^4_{\Lambda}$ H; 1 $^+$	1.067(80)	1.75	[-0.12, +0.10]
	$^4_{\Lambda}$ He; 1 $^+$	0.984(50)	1.71	[-0.13, +0.10]

Ab initio calculations of light hypernuclei: model uncertainties

- Energy levels of light hypernuclei are sensitive to details of the YN and NN+NNN interactions
- One can naively expect that calculated A separation energies should be insensitive to the choice of nuclear interaction
- ► A rather weak residual dependence of B_A was found using a limited set of phenomenological [Nogga et al., PRL 88, 172501 (2002)] and *X*EFT [Le et al., EPJA 56, 301 (2020)] NN interactions
- We employed [DG, Htun, Forssén, PRC 106, 054001 (2022)] the family of 42 different NNLO_{sim} [Carlsson et al., PRX 6, 011019 (2016)] nuclear NN+NNN interactions to expose the magnitude of systematic model uncertainties in B_Λ

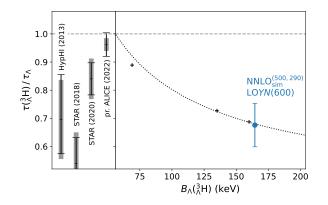


• Model uncertainty connected to the choice of nuclear Hamiltonian quantified by variance, $\sigma^2(NNLO_{sim})$, of predictions for B_{Λ}

 $\frac{{}^{3}_{\Lambda}{}^{3}_{\Lambda}{}^{4}_{\Lambda}{}^{4}_{\Lambda}{}^{4}_{\Lambda}{}^{4}_{\Lambda}{}^{4}_{R}e^{5}_{\Lambda}{}^{5}_{R}e^{4}_{\Lambda}{}^{4}_{H};1^{+}{}^{4}_{\Lambda}{}^{4}_{H}e;1^{+}_{\Lambda}{}^{6}_{M}e;1^{+}_{\Lambda}{}^{6}_$

Theoretical uncertainties: hypertriton lifetime

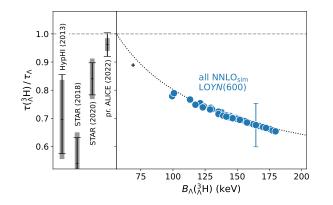
- Employed ab initio NCSM ³_ΛH, ³He wave functions to compute the ³_ΛH
 2-body π[−] decay rate Γ_{³_ΛH→³He+π[−]}
- Accounted for significant but opposing contributions of pionic FSI and $\Sigma \rightarrow N\pi$ due to ΣNN admixtures in ${}^{3}_{\Lambda}H$



- ► Deduced the ${}^{3}_{\Lambda}$ H lifetime $\tau({}^{3}_{\Lambda}$ H) by using the measured branching ratio $R_{3} = \Gamma_{{}^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}}/\Gamma_{\pi^{-}} = 0.35(4)$ to obtain the inclusive $\pi^{-} {}^{3}_{\Lambda}$ H decay rate and employing the $\Delta T = 1/2$ rule to include all π^{0} decay modes [Pérez-Obiol, DG, Friedman, Gal, PLB 811, 135916 (2020); in preparation (2023)]
 - ► B_Λ(³_ΛH) poorly known experimentally and suffers from large theoretical uncertainties
 - None of the conflicting RHI measured τ(³_ΛH) can be excluded but rather associated with its own value of B_Λ

Theoretical uncertainties: hypertriton lifetime

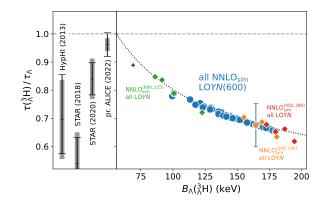
- Employed ab initio NCSM ³_ΛH, ³He wave functions to compute the ³_ΛH
 2-body π[−] decay rate Γ_{³_ΛH→³He+π[−]}
- Accounted for significant but opposing contributions of pionic FSI and $\Sigma \rightarrow N\pi$ due to ΣNN admixtures in ${}^{3}_{\Lambda}H$



- ► Deduced the ${}^{3}_{\Lambda}$ H lifetime $\tau({}^{3}_{\Lambda}$ H) by using the measured branching ratio $R_{3} = \Gamma_{{}^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}}/\Gamma_{\pi^{-}} = 0.35(4)$ to obtain the inclusive $\pi^{-} {}^{3}_{\Lambda}$ H decay rate and employing the $\Delta T = 1/2$ rule to include all π^{0} decay modes [Pérez-Obiol, DG, Friedman, Gal, PLB 811, 135916 (2020); in preparation (2023)]
 - ► B_Λ(³_ΛH) poorly known experimentally and suffers from large theoretical uncertainties
 - None of the conflicting RHI measured τ(³_ΛH) can be excluded but rather associated with its own value of B_Λ

Theoretical uncertainties: hypertriton lifetime

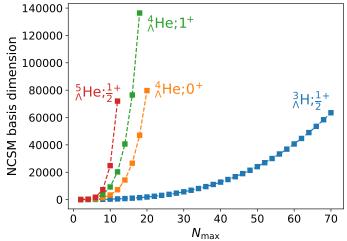
- Employed ab initio NCSM ³_ΛH, ³He wave functions to compute the ³_ΛH
 2-body π[−] decay rate Γ_{³_ΛH→³He+π[−]}
- Accounted for significant but opposing contributions of pionic FSI and $\Sigma \rightarrow N\pi$ due to ΣNN admixtures in ${}^{3}_{\Lambda}H$



- ► Deduced the ${}^{3}_{\Lambda}$ H lifetime $\tau({}^{3}_{\Lambda}$ H) by using the measured branching ratio $R_{3} = \Gamma_{{}^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}}/\Gamma_{\pi^{-}} = 0.35(4)$ to obtain the inclusive $\pi^{-} {}^{3}_{\Lambda}$ H decay rate and employing the $\Delta T = 1/2$ rule to include all π^{0} decay modes [Pérez-Obiol, DG, Friedman, Gal, PLB 811, 135916 (2020); in preparation (2023)]
 - ► B_Λ(³_ΛH) poorly known experimentally and suffers from large theoretical uncertainties
 - None of the conflicting RHI measured τ(³_ΛH) can be excluded but rather associated with its own value of B_Λ

Ab initio calculations of hypernuclei: the curse of dimensionality

- Ab initio methods provide a reliable link between the properties of hypernuclei and the underlying hyperon-nucleon interactions
- Is it possible to directly incorporate them in optimization of hyperon-nucleon forces which require a large number of model evaluations?



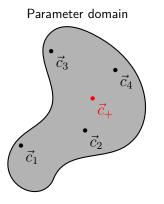
This is not feasible given their computational cost

Emulating ab initio NCSM calculations: eigenvector continuation

Emulating ab initio NCSM calculations: eigenvector continuation

Eigenvector continuation is based on the fact that when a Hamiltonian depends smoothly on some real-valued control parameter(s), any eigenvector is a smooth function of that parameter(s) and its trajectory is confined to a very low-dimensional subspace

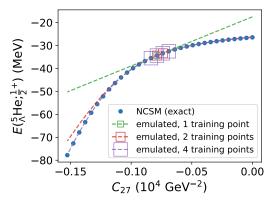
[Frame et al., PRL 121, 032501 (2018); König et al., PLB 810, 135814 (2020)]



- Write the Hamiltonian in a linearized form $H(\vec{c}) = H_0 + \sum c_i H_i$
- Select 'training' points $\{\vec{c}_i\}$ and solve the exact problem $H(\vec{c}_i) |\psi_i\rangle = E_i |\psi_i\rangle$
- ► Project the Hamiltonian onto the subspace of training eigenvectors $\{|\psi_i\rangle\}$ and diagonalize the generalized eigenvalue problem $\tilde{H}(\vec{c}_+) |\tilde{\psi}\rangle = \tilde{E}_+ \tilde{N} |\tilde{\psi}\rangle$, where $\tilde{H}_{ij} = \langle \psi_i | H(\vec{c}_+) | \psi_j \rangle$, $\tilde{N}_{ij} = \langle \psi_i | \psi_j \rangle$ and \tilde{E}_+ approximates E_+

Emulating ab initio NCSM calculations: eigenvector continuation

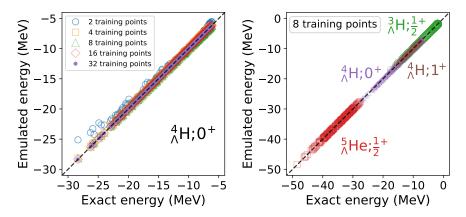
► Hypernuclear Hamiltonian with LOYN interactions can be linearized, $H = H_0 + C_{27}V_{27} + C_{10*}V_{10*} + C_{10}V_{10} + C_{8a}V_{8a} + C_{8s}V_{8s}$, where C_{is} are the 5 independent $SU_f(3)$ LECs and H_0 contains the kinetic energy, NN+NNN interactions, and hypernuclear meson-exchange and Coulomb interactions



- ${}^{5}_{\Lambda}$ He; $\frac{1}{2}^{+}$, model space truncation $N_{\text{max}} = 12$
- Vary one LEC, C₂₇, within ±100 % relative variation with respect to the nominal LOYN(Λ_{YN}=600 MeV) value
- Select 1, 2, 4 exact NCSM eigenvectors to construct the emulators
- Accurate and lighting-fast emulation of ab initio NCSM calculations
- ► Continued eigenvectors stay within the same $(N_{max}, \hbar\omega)$ model space \rightarrow extrapolation of observables to infinite model space is still necessary

Emulating ab initio NCSM calculations: cross validation

- Select 2, 4, 8, 16, 32 points in the 5-dimensional space of LOYN LECs using the Latin hypercube space-filling design in a ±20% domain around the nominal values to train the emulators
- Select randomly 256 exact NCSM calculations within the same domain of LECs



► We can achieve relative accuracy of |δ_{rel}| < 1, 0.1, 0.002 % using 8, 16, 32 training points</p>

Global sensitivity analysis

- Addresses the question of how variance of the output of a model can be apportioned to variances of the model inputs [Saltelli et al., CPC 181, 259 (2010)]
- ► Allows to identify the most influential LECs of χ EFT YN interactions which determine the hypernuclear energy spectra
- For an output Y = f(a) of a model f, we decompose the total variance as

$$\operatorname{Var}[Y] = \sum_{i=1}^{d} V_i + \sum_{i < j=1}^{d} V_{ij} + \cdots,$$

where

$$\begin{split} & \mathsf{V}_i = \mathsf{Var}\left[\mathsf{E}_{\vec{\alpha} \sim (\alpha_i)}[\mathsf{Y}|\alpha_i]\right], \\ & \mathsf{V}_{ij} = \mathsf{Var}\left[\mathsf{E}_{\vec{\alpha} \sim (\alpha_i, \alpha_j)}[\mathsf{Y}|\alpha_i, \alpha_j]\right] - \mathsf{V}_i - \mathsf{V}_j, \end{split}$$

are variances of conditional expectation of Y

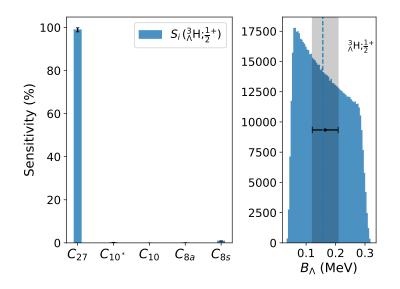
- The variance integrals are computed by using quasi-MC sampling, including 95 % confidence intervals
- The first-, second-, and higher-order (Sobol') sensitivity indices

$$S_i = \frac{V_i}{\operatorname{Var}[Y]}, \quad S_{ij} = \frac{V_{ij}}{\operatorname{Var}[Y]}, \quad \cdots$$

► Total effect

$$S_{Ti} = S_i + S_{ij} + \cdots$$
 13

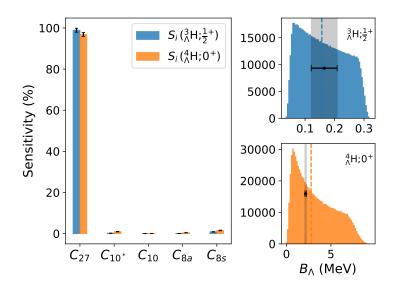
- $Y = \Lambda$ separation energies of ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H_{gs}$, ${}^{4}_{\Lambda}He_{gs}$, ${}^{4}_{\Lambda}He_{exc}$, ${}^{4}_{\Lambda}He_{exc}$, ${}^{5}_{\Lambda}He_{gs}$
- *α* = the 5 LECs of the LOYN interaction; independent and uniformly distributed within ±2% (±20%) variation around the nominal values of LOYN(Λ_{YN}=600 MeV) for ³_ΛH (A = 4,5)
- ► Identify the most influential LECs



- ► S_i ≈ S_{Ti}, energies are additive in all LECs
- C₂₇ is responsible for most of the variation in energy

$$\begin{split} C_{1S_{0}}^{\Lambda\Lambda} &= \frac{1}{10} (9C_{27} + C_{8s}) \\ C_{3S_{1}}^{\Lambda\Lambda} &= \frac{1}{2} (C_{10^{*}} + C_{8a}) \\ C_{3S_{1}}^{\Sigma\Sigma} &= C_{10} \end{split}$$

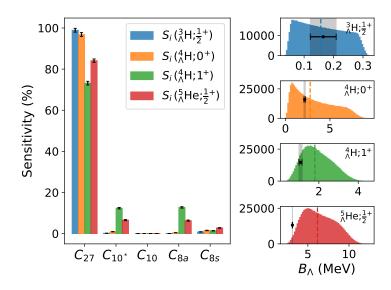
- $Y = \Lambda$ separation energies of ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H_{gs}, ${}^{4}_{\Lambda}$ He_{gs}, ${}^{4}_{\Lambda}$ H_{exc}, ${}^{4}_{\Lambda}$ He_{exc}, ${}^{5}_{\Lambda}$ He_{gs}
- *α* = the 5 LECs of the LOYN interaction; independent and uniformly distributed within ±2% (±20%) variation around the nominal values of LOYN(Λ_{YN}=600 MeV) for ³_ΛH (A = 4,5)
- Identify the most influential LECs



- ► S_i ≈ S_{Ti}, energies are additive in all LECs
- C₂₇ is responsible for most of the variation in energy

$$\begin{split} & C_{1S_{0}}^{\Lambda\Lambda} = \frac{1}{10} (9\mathsf{C}_{27} + \mathsf{C}_{8s}) \\ & C_{3S_{1}}^{\Lambda\Lambda} = \frac{1}{2} (\mathsf{C}_{10^{*}} + \mathsf{C}_{8a}) \\ & C_{3S_{1}}^{\Sigma\Sigma} = \mathsf{C}_{10} \end{split}$$

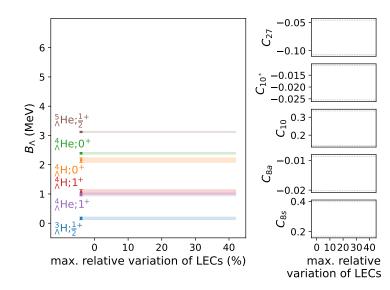
- $Y = \Lambda$ separation energies of ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H_{gs}, ${}^{4}_{\Lambda}$ He_{gs}, ${}^{4}_{\Lambda}$ H_{exc}, ${}^{4}_{\Lambda}$ He_{exc}, ${}^{5}_{\Lambda}$ He_{gs}
- *α* = the 5 LECs of the LOYN interaction; independent and uniformly distributed within ± 2% (± 20%) variation around the nominal values of LOYN(Λ_{YN}=600 MeV) for ³_ΛH (A = 4, 5)
- ► Identify the most influential LECs



- ► S_i ≈ S_{Ti}, energies are additive in all LECs
- C₂₇ is responsible for most of the variation in energy

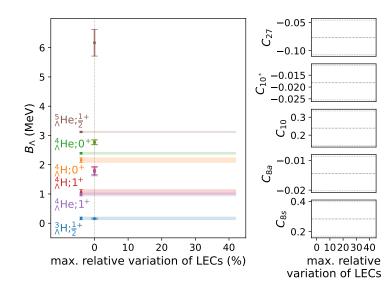
$$\begin{split} & C_{1S_{0}}^{\Lambda\Lambda} = \frac{1}{10}(9\textbf{C}_{27} + \textbf{C}_{8s}) \\ & C_{3S_{1}}^{\Lambda\Lambda} = \frac{1}{2}(\textbf{C}_{10^{*}} + \textbf{C}_{8a}) \\ & C_{3S_{1}}^{\Sigma\Sigma} = \textbf{C}_{10} \end{split}$$

- Simultaneous fitting of bound-state and scattering observables is inevitable
- ► Can we improve the description of A separation energies in light hypernuclei with a small variation of LOYN LECs?



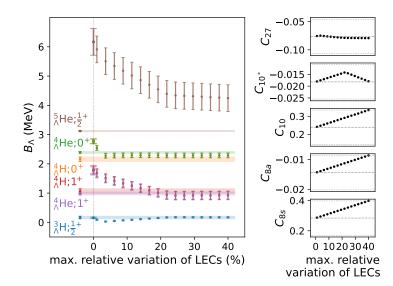
- Proof of principle, simple least-squares optimization
- LECs restricted up to ± 40 % variation around the nominal values of LOYN(Λ_{YN}=600 MeV)
- ► Theoretical precision $\sigma_{\text{th}}^2 = \sigma_{\text{method}}^2 + \sigma_{\text{model}}^2$

- Simultaneous fitting of bound-state and scattering observables is inevitable
- ► Can we improve the description of A separation energies in light hypernuclei with a small variation of LOYN LECs?



- Proof of principle, simple least-squares optimization
- LECs restricted up to ± 40 % variation around the nominal values of LOYN(Λ_{YN}=600 MeV)
- ► Theoretical precision $\sigma_{th}^2 = \sigma_{method}^2 + \sigma_{model}^2$

- ► Simultaneous fitting of *bound-state and scattering* observables is inevitable
- ► Can we improve the description of A separation energies in light hypernuclei with a small variation of LOYN LECs?



- Proof of principle, simple least-squares optimization
- LECs restricted up to ± 40 % variation around the nominal values of LOYN(Λ_{YN}=600 MeV)
- ► Theoretical precision $\sigma_{th}^2 = \sigma_{method}^2 + \sigma_{model}^2$

Summary & outlook

Summary & outlook

Ab initio calculations of light hypernuclei

Hypernuclear observables, such as A separation energies of light hypernuclei and hypertriton lifetime, might suffer from sizable theoretical uncertainties associated with the choice of nuclear interaction

Emulating ab initio NCSM

- Eigenvector continuation provides fast and accurate emulation of ab initio calculations of light hypernuclei
- ► Global sensitivity analysis identifies **the most influential LECs** of χ EFT YN interaction which **determine the energy spectra** of light hypernuclei
- ► A significantly better description of energy levels of light hypernuclei can be achieved with a relatively small variation of the LOYN(A_{YN}=600 MeV) LECs

Outlook

Simultaneous optimization of YN interactions using bound-state and scattering observables with accompanying uncertainty quantification