

Towards a common particle-emitting source in HM pp at 13 TeV for mesons and baryons with ALICE

Maximilian Korwieser (TUM) on behalf of the ALICE Collaboration EMMI Workshop, Trieste, 03.-07. July 2023 203/07/23 15:00 - 15:30

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

TIT Femtoscopy a powerful tool

- Study final-state interactions of exotic pairs
- Needs **precise** understanding of the source

- Access final state interactions
 - Complementary to scatterings experiments
 - Access interaction between short-lived particles
 - 3-body studies
 - → Dimitar Mihaylov (today):
 "Hadron-hadron correlation"
 - → Emma Chizzali (today): "D-hadron interaction from correlation measurements"
 - → Oton Vazques Doce (today) "Experimental insight into the KN strong interaction"
 - → Laura Serksnyte (Wednesday) "3-body interactions of hardons in pp collisions with ALICE"
 - → Raffaele Del Grande (Thursday) "Proton-phi bound state"

TIT Femtoscopy at ALICE in HM pp 13 TeV

- ALICE
- HM pp collisions @ 13 TeV
 - Particles produced with relative distances of *O*(1 fm)
 - o 1 Billion events in Run2
 - Analyses so far... ALICE Collaboration PRC 99 (2019) 2, 024001 PLB 797 (2019), 134822 PRL 123 (2019), 112002 PLB 805 (2020), 135419 PLB 811 (2020), 135849 Nature 588 (2020) 232-238 PRL 127 (2021), 172301 PLB 833 (2022), 137272 PLB 829 (2022), 137060 PRD 106 (2022) 5, 052010 PLB (2022), 137223
- Direct detection of charged particles (π , K, p) by TPC and TOF
- Purity of about 99 % for π , K, p due to excellent PID capabilities

TIT Femtoscopy in a nutshell

- Obtain pairs form
 - correlated sample (A):
 pairs from the same event
 - uncorrelated sample (*B*): pairs from *different* events
- Understand data
 - purity, feed-down
 - background?

o ...

TIT Femtoscopy in a nutshell

M. Lisa et. al. Ann. Rev. Nucl. Part. Sci. 55:357-402, 2005

[1] D. Mihaylov et al. EPJC78(2018) 394

- Common source for all produced baryons in small collision systems?
- Use p-p (well known interaction) to constrain the femtoscopic source
- Validate findings with $p-\Lambda$

$$egin{aligned} m_{
m T} &= \sqrt{k_{
m T}^2 + m_{
m avrg}^2} \ k_{
m T} &= rac{1}{2} |ec{p}_{{
m T},1} + ec{p}_{{
m T},2}| \end{aligned}$$

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

TIT Common baryon source in HM pp 13 TeV

Access smaller m_T by studying π - π and meson-baryon correlations with K⁺-p

- Common scaling is restored by accounting for non-gaussian contributions
 - → Motivates the assumption of a universal particle source for baryons
- How well does the source resonance model (RSM) perform for mesons? Is the scaling different?

III Estimating the resonance contribution for pions

III Study the effect of the resonances

[1] D. Mihaylov et al. EPJC 78 (2018)

- Example calculation using CATS [1]
- Comparison of exponential source with RSM
 - Exponential mimics RSM
 - Obtained radii differ
 - RSM provides quantitative insight of resonance contributions
- Resonances explain previous findings of exponential type source for π–π

Measured π - π correlation HM pp 13 TeV

- Obtained in several $m_{\rm T}$ bins
- Fit with $C^{\pi\pi}(k^*) = \text{Pol}(k^*) \times C^{\text{Femto}}(k^*)$
 - Pol1 or Pol2 to account for residual background
 - Interaction is modeled by Coulomb interaction and Quantum Statistics
 - $C^{\text{Femto}}(k^*)$ corrected for purtiy and fractions by λ parameter formalism

• Extract r_{core} for each m_T bin

Measured K⁺-p correlation HM pp 13 TeV

- Obtained in several $m_{\rm T}$ bins
- Fit with $C^{Kp}(k^*) = Pol(k^*) \times C^{Femto}(k^*)$
 - Pol0 or Pol1 to account for residual background
 - Interaction is modeled by Coulomb interaction and χ EFT [1]
 - $C^{\text{Femto}}(k^*)$ corrected for purity and fractions by λ parameter formalism
 - Extract r_{core} for each m_T bin

[1] K. Aoki et al. PTEP 1 (2019)

• p-p taken from PLB 811 2020

- p-p taken from PLB 811 2020
- Parameterization and extrapolation of the r_{core} dependence

- p-p taken from PLB 811 2020
- Parameterization and extrapolation of the *r*_{core} dependence
- $\pi \pi$ from this analysis

- p-p taken from PLB 811 2020
- Parameterization and extrapolation of the *r*_{core} dependence
- $\pi \pi$ from this analysis
- For m_T above 0.4 GeV/c² good agreement with parametrization
 - → Saturation for π–π radii
 (not predicted by any model)

- p-p taken from PLB 811 2020
- Parameterization and extrapolation of the *r*_{core} dependence
- $\pi \pi$ from this analysis
- K⁺–p from this analysis
- For m_T above 0.4 GeV/c² good agreement with parametrization
 - → Evidence for a common source for all mesons and baryons in HM pp at 13 TeV

A new numerical framework arXiv 2305.08441

 Goal: generic modeling of particle emission in small systems, including kinematic effects such as the m_T scaling and applicable to N-body problems

A new numerical framework arXiv 2305.08441

- Goal: generic modeling of particle emission in small systems, including kinematic effects such as the m_T scaling and applicable to N-body problems
- Monte-Carlo simulation based on the properties of single particle emission

A new numerical framework arXiv 2305.08441

- Goal: generic modeling of particle emission in small systems, including kinematic effects such as the m_T scaling and applicable to N-body problems
- Monte-Carlo simulation based on the properties of single particle emission
- Generation of events, containing point-like particles with well defined spatial and momentum coordinates

A new numerical framework arXiv 2305.08441

- Goal: generic modeling of particle emission in small systems, including kinematic effects such as the m_T scaling and applicable to N-body problems
- Monte-Carlo simulation based on the properties of single particle emission
- Generation of events, containing point-like particles with well defined spatial and momentum coordinates
- Generate both primordial particles and resonances

A new numerical framework arXiv 2305.08441

- Goal: generic modeling of particle emission in small systems, including kinematic effects such as the m_T scaling and applicable to N-body problems
- Monte-Carlo simulation based on the properties of single particle emission
- Generation of events, containing point-like particles with well defined spatial and momentum coordinates
- Generate both primordial particles and resonances
- Group the particles into pairs and extract the source based on those of k* < 100 MeV/c

The modelling is effective and based on three parameters. To be tested on ALICE data.

Displacement parameter

- Random Gaussian **displacement** around the collision point
- Sample the momentum

In this example: proton p_T distributions from ALICE <u>Eur. Phys. J. C, 80(8):693, 2020</u>

Hadronization parameter

• Propagate the particles on a straight trajectory until they intersect an ellipsoidal surface around the collision point

Free-streaming phase

- Propagate each particle for a fixed amount of time τ , based on the velocity $\beta = p/\gamma m$
- The resulting distribution is the primordial source

An example for pp pairs

Decay short-lived resonances and group the final particles into pairs, after equalizing their time.
 N.B. ²/₃ of the protons stem from resonances!

I ALICE data: **pp** and **p** correlations

Data: High-multiplicity pp collisions @ 13 TeV from ALICE

Phys.Lett.B 811 (2020) 135849

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

■ ALICE data + CECA: pp and pA correlations

- pp interaction: fixed to the Argonne v18 potential Phys. Rev. C, 51:38-51, 1995
- pΛ interaction: Usmani potential, short-range repulsive core fitted Phys. Rev. C, 29:684-687, 1984
- A combined fit of the m_T differential pp and pA correlations!

TIP CECA: Source distribution m_{T} scaling

I ALICE data + CECA: Source distribution m_{T} scaling

■ ALICE data + CECA: Results of pA fit

	Usmani	Usmani (NLO19)	Usmani (Fit)
χ^2	-	473	371
<i>d</i> (fm)	-	0.288 ± 0.013	0.176 ± 0.005
$h_{\rm T}$ (fm)	-	$ $ 3.23 $^{+0.05}_{-0.30}$	$\left { m 2.68^{+0.06}_{-0.04}} ight $
au (fm/c)	-	3.26 ^{+0.16} _{-0.04}	$3.76^{+0.05}_{-0.03}$
f_0 (fm)	2.88	2.88	2.88
f_1 (fm)	1.66	1.41	1.15 ± 0.07

- Usmani potential [1] tuned to NLO19 yields higher $\chi^2/243$ compared to a fit with free repulsive core parameters
- Fit prefers a reduced strength in the ${}^{3}S_{1}$ channel:
 - In this investigation, only the ${}^{3}S_{1}$ channel parameters were varied
 - The ¹S₀ channel is related to binding energy of the hypertriton

[1] A. R. Bodmer et al. PRC 29 (1984)

IIII Summary + Outlook

Summary

- For the <u>first time</u> a quantitative description of the exponential source of pions is presented by **explicitly** considering the influence of short-lived resonances on a Gaussian core (RSM model)
- K⁺-p and same charge π-π show agreement with the RSM assumption of a universal Gaussian core source for primordial particles
- Source radii reach saturation for $m_T < 0.4 \text{ GeV}/c^2$
- New source model: CECA enables fit of **space-momentum correlations**!
- Already validated with p-p and $p-\Lambda$ experimental data
- Femtoscopic data prefer reduced strong interaction strength in ³S₁

Outlook

- Available data to tune particle production coordinates in transport models
- Refine source model in order to account for saturation effects (CECA [1])
- Apply CECA to model also meson-baryon and meson-meson pairs

[1] D. Mihaylov et al. arXiv 2305.08441(2023)

IIII Summary + Outlook

Summary

For the **first time** a quantitative description of the exponential source of pions is • presente resonances on a Even more details about the π - π source were Gaussia studied: Doubly differential as function of $m_{\rm T}$ and K⁺-p ar umption • multiplicity on MB data set! of a **uni** Source Same saturation behaviour as in high–mult. data set. Scaling of the radii with multiplicity is observed. relations! New so Already Femtos Plots are in the back-up! S₁

Outlook

- Available data to tune particle production coordinates in transport models
- Refine source model in order to account for saturation effects (CECA [1])
- Apply CECA to model also meson-baryon and meson-meson pairs

^[1] D. Mihaylov et al. arXiv 2305.08441(2023)

TIT Results for HM π – π - Pol2

TIT Results for HM π – π - Pol1

TIP Results for $N_{ch} > 30 - \pi - \pi$ - Data/Pythia - Pol1

TIP Results for $N_{ch} > 30 - \pi - \pi$ - Data/Pythia - Pol2

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

TIP Results for 18< N_{ch} < 30 - π - π - Data/Pythia - Pol1

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

TIP Results for 18< N_{ch} < 30 - π - π - Data/Pythia - Pol2

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

TIP Results for $N_{ch} < 18 - \pi - \pi$ - Data/Pythia - Pol1

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

TIP Results for $N_{ch} < 18 - \pi - \pi$ - Data/Pythia - Pol2

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Results for Mult. [> 30] - Data/Pythia - Pol2

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

$\prod m_T$ Scaling for pions

- For m_T > 0.4 (GeV/c) scaling with m_T is found for all multiplicity bins
- The extracted *r*_{core} radii are increasing with multiplicity

$\prod m_T$ Scaling for pions

- For m_T > 0.4 (GeV/c) scaling with m_T is found for all multiplicity bins
- The extracted *r*_{core} radii are increasing with multiplicity

$\prod m_T$ Scaling for pions

- For m_T > 0.4 (GeV/c) scaling with m_T is found for all multiplicity bins
- The extracted *r*_{core} radii are increasing with multiplicity

™ Fits to the K⁺–p in HM

- Strong interaction is modeled by state-of-the-art χEFT [K. Aoki et al. PTEP 1 (2019)]
- Source is modeled with the RSM (as for π) and r_{core} extracted from the fit

™ Fits to the K⁺–p in HM

- Strong interaction is modeled by state-of-the-art χEFT [K. Aoki et al. PTEP 1 (2019)]
- Source is modeled with the RSM (as for π) and r_{core} extracted from the fit

III ALICE detector

Malysis details

MaximiliaorKaswiesen Eb/Mas6Rormas.donwieser@tum.de

III Estimating the resonance contribution

Resonances	$c\tau_{\rm res}~({\rm fm})$	Fraction (%)
$ ho^0$	1.3	9.01
$ ho^+$	1.3	8.71
ω (782)	23.4	7.67
K*(892)+	3.9	2.29
K *(892)0	3.9	2.25
b1(1235)+	1.4	1.90
a2(1320)+	1.8	1.48
η	150631.3	1.45
a1(1260)+	0.5	1.37
f2(1270)	1.1	1.36
a0(980)+	2.6	1.36
h1(1170)	0.5	1.18

Lifetime $c\tau$ (fm)	Fraction $\mathscr{F}(\%)$	$\left< m_{\rm res}^{\rm eff} \right> ({\rm GeV}/c)$
Primordial	28.0	-
$c \tau_{\rm res} < 1$	14.8	0.308
$1 < c \tau_{ m res} < 2$	34.8	0.526
$2 < c \tau_{\rm res} < 5$	10.2	0.151
$c\tau_{\rm res} > 5$	12.2	0.146

- Employ statistical hadronization model [1]
 - Describe system by statistical ensemble
 - Enforce conservation of quantum numbers
 - Predict yields
- Calculation carried out with Thermal-FIST [2,3]
 - Configure model to pp
 - B.R.s of strong decays fixed to PDG
 - Extract resonances
- Summary parameters for RSM
 - m_eff = 1124 GeV/c^2
 - о ст_eff = 1.5 fm
 - Select resonances cocktail in EPOS [4] for decay kinematics

F. Becattini Z. Phys. C 76 (1997), [2] V. Vovchenko et al. CPC 100 2019,
 V. Vovchenko et al. PRC 100834 (2019), [4] K.Werner et al. PRC 92 (2015)

IIII Universal Source Ansatz

ALICE Coll. PLB 811 (2020)

IIII Universal Source Ansatz

ALICE Coll. PLB 811 (2020)

IIII Universal Source Ansatz

ALICE Coll. PLB 811 (2020)

Decomposition of the Correlation Function

But *what* is measured?

- Does purity play a role?
- What about feed-down weak decays?
- Do we have background?

I Decomposition of the Correlation Function

$$C_{\text{model}}(k^*) = 1/C_{\text{MC}}(k^*) \cdot (\lambda_{\text{gen}}C_{\text{gen}}(k^*) + \lambda_{\text{feed}} + \lambda_{\text{misid}})$$

I Decomposition of the Correlation Function

$$C_{\text{model}}(k^*) = 1/C_{\text{MC}}(k^*) \cdot (\lambda_{\text{gen}}C_{\text{gen}}(k^*) + \lambda_{\text{feed}} + \lambda_{\text{misid}})$$

Model for genuine interaction

- Bose-Einstein quantum statistics
- Coulomb interaction

Decomposition of the Correlation Function

$$C_{\text{model}}(k^*) = 1/C_{\text{MC}}(k^*) \cdot \left(\lambda_{\text{gen}} C_{\text{gen}}(k^*) + \lambda_{\text{feed}}^{31.6\%} + \lambda_{\text{misid}}^{2\%}\right)$$

Model for genuine interaction

- Bose-Einstein quantum statistics
- Coulomb interaction

Introduce λ -parameter

- Each component has a weight
- $C(k^*) = 1$, for feed-down and misidentified
- Evaluated by MC studies

Decomposition of the Correlation Function

$$C_{\text{model}}(k^*) = 1/C_{\text{MC}}(k^*) \cdot \left(\lambda_{\text{gen}} C_{\text{gen}}(k^*) + \lambda_{\text{feed}}^{31.6\%} + \lambda_{\text{misid}}^{2\%}\right)$$

Model for genuine interaction

- Bose-Einstein quantum statistics
- Coulomb interaction

Correct for non-femto effects

- Divide by $C(k^*)$ obtained from MC
- Collimated production often called 'mini-jet'

Introduce λ -parameter

- Each component has a weight
- $C(k^*) = 1$, for feed-down and misidentified
- Evaluated by MC studies

III Estimating the resonance contribution

- Calculation carried out with Thermal-FIST [1,2]
 - Use statistical hadronization model [3]
 - **28 %** primordial, **72 %** resonances
- Summary parameters for RSM
 - o <m_{eff}> = 1124 GeV/c²
 - <*ct*_{eff}> = 1.5 fm
 - Select resonances cocktail in EPOS [4] for decay kinematics

[1] V. Vovchenko et al. PRC 100834 (2019)
 [2] V. Vovchenko et al. CPC 100 (2019)
 [3] F. Becattini Z. Phys. C 76 (1997)
 [4] K.Werner et al. PRC 92 (2015)

TIT Femtoscopy in a nutshell

- Measure C(k*), 'fix' interaction, study S(r*)
- For evaluation of integral and S(r*) use CATS framework Eur. Phys. J. C 78 (2018) 5, 394