Updated experimental insight into the KN interaction.

Otón Vázquez Doce (INFN Frascati)

EMMI Workshop: Bound states and particle interactions in the 21st century, 3-6 julio 2023, Trieste, Italy

KbarN interaction

KN and KbarN strong interactions are very different ⇒ Strong attractiveness of KbarN interaction

Meson-Baryon interaction in S=-1 sector: building block of non-perturbative regime of QCD

- Strong coupled channel dynamics + Bound/resonant/molecular states
- Fundamental to accommodate/rule-out a meson condensate with strangeness content in the interior of NS

KbarN interaction

KN and KbarN strong interactions are very different ⇒ Strong attractiveness of KbarN interaction

Meson-Baryon interaction in S=-1 sector: building block of non-perturbative regime of QCD

- Strong coupled channel dynamics + Bound/resonant/molecular states
- Fundamental to accommodate/rule-out a meson condensate with strangeness content in the interior of NS

Sub-threshold: Λ(1405) is an "old object" not fitting in the standard 3-quark picture

- Chiral SU(3) EFT \Rightarrow Molecular state with two poles KbarN- $\Sigma\pi$
- PDG 2020: lower pole as new state Λ(1380)

 \Rightarrow Nature of $\Lambda(1405)$: playground for new charm Pentaquark/molecular states \Rightarrow New Belle-ALICE data: "Analogous" behaviour repeated in the S=-2 sector!

- $\Xi(1620)$ - $\Xi(1690)$: coupled to Kbar- Λ , Kbar- Σ , $\Xi\pi$.

Theoretical approaches:

- meson exchange
- phenomenological
- Chiral SU(3) EFT
- Lattice QCD

Theoretical approaches:

- meson exchange
- phenomenological
- Chiral SU(3) EFT

Theoretical approaches:

- meson exchange
- phenomenological
- <u>Chiral SU(3) EFT</u>
- Lattice QCD

NNLO in SU(3) ChiEFT using S=0, S=1, S=-1 data

Cross-Channel Constraints on Resonant Antikaon-Nucleon Scattering

Lu, Geng, Doering, Mai Phys. Rev. Lett. 130, 071902 (2023)

Theoretical approaches:

- meson exchange
- phenomenological
- <u>Chiral SU(3) EFT</u>
- Lattice QCD

<u>Meson-baryon S=-1 interaction, NLO chiral SU(3) Lagrangian</u> <u>including s- and p-waves.</u>

The $\bar{K}N$ Interaction in Higher Partial Waves

A. Feijoo, D. Gazda, V. Magas, A. Ramos, Symmetry 13 (2021) 8, 1434

Theoretical approaches:

- meson exchange
- phenomenological
- Chiral SU(3) EFT
- Lattice QCD

Data is crucial to test (+feed) this approaches.

Data fitting by Chiral SU(3).

- Going to NLO (N²LO?), s+p waves \Rightarrow more parameters to be fixed (by data)
- Adding **new data** helps to improve the model
- Adding more precise data helps to improve the model
- Adding data at different energies helps to improve the model

Theoretical frame

Theoretical approaches:

- meson exchange
- phenomenological
- Chiral SU(3) EFT
- Lattice QCD

Data is crucial to test (+feed)

• Next to leading order (NLO), just considering the contact term $\mathcal{L}_{\phi B}^{(2)} = b_D \langle \bar{B} \{\chi_+, B\} \rangle + b_F \langle \bar{B} [\chi_+, B] \rangle + b_0 \langle \bar{B} B \rangle \langle \chi_+ \rangle + d_1 \langle \bar{B} \{u_\mu, [u^\mu, B]\} \rangle \\ + d_2 \langle \bar{B} [u_\mu, [u^\mu, B]] \rangle + d_3 \langle \bar{B} u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B} B \rangle \langle u^\mu u_\mu \rangle \\ - \frac{g_1}{8M_N^2} \langle \bar{B} \{u_\mu, [u_\nu, \{D^\mu, D^\nu\} B]\} \rangle - \frac{g_2}{8M_N^2} \langle \bar{B} [u_\mu, [u_\nu, \{D^\mu, D^\nu\} B]] \rangle \\ - \frac{g_3}{8M_N^2} \langle \bar{B} u_\mu \rangle \langle [u_\nu, \{D^\mu, D^\nu\} B] \rangle - \frac{g_4}{8M_N^2} \langle \bar{B} \{D^\mu, D^\nu\} B \rangle \langle u_\mu u_\nu \rangle \\ - \frac{h_1}{4} \langle \bar{B} [\gamma^\mu, \gamma^\nu] B u_\mu u_\nu \rangle - \frac{h_2}{4} \langle \bar{B} [\gamma^\mu, \gamma^\nu] u_\mu [u_\nu, B] \rangle - \frac{h_3}{4} \langle \bar{B} [\gamma^\mu, \gamma^\nu] u_\mu \langle u_\nu, B \rangle + h.c.$

5t (+feed) • $b_0, b_D, b_F, d_1, d_2, d_3, d_4, g_1, g_2, g_4, h_1, h_2, h_3, h_4$ are not well established, so they should be treated as parameters of the model!

Data fitting by Chiral SU(3).

- Going to NLO (N²LO?), s+p waves \Rightarrow more parameters to be fixed (by data)
- Adding new data helps to improve the model
- Adding more precise data helps to improve the model
- Adding data at different energies helps to improve the model

Available experimental data

Available experimental data

Scattering data

Lu, Geng, Doering, Mai Phys. Rev. Lett. 130, 071902 (2023)

- The present knowledge of total and differential cross sections of low energy kaon-nucleon reactions is very limited.
- Below 150 MeV/c the experimental data are very scarce and with large errors.

AMADEUS: Inelastic cross sections at p=98 MeV

- KLOE at Daφne e⁺e⁻ collider: φ factory ⇒ Kaon beam of ~120MeV
- Drift chamber of KLOE used as active target (90% ⁴He, 10% $C_{a}H_{10}$)

First Simultaneous ${\rm K}^-{\rm p} \to (\Sigma^0/\Lambda)\,\pi^0$ Cross Sections Measurements at 98 MeV/c

oton.vazquez.doce@cern.ch

AMADEUS: Inelastic cross sections at p=98 MeV

First Simultaneous ${\rm K}^-{\rm p} o (\Sigma^0/\Lambda) \, \pi^0$ Cross Sections Measurements at 98 MeV/c

AMADEUS Collaboration, arXiv:2210.10342 [nucl-ex]. Submitted to PRL.

•
$$\sigma_{K^-p\to\Sigma^0\pi^0} = 42.8 \pm 1.5(stat.)^{+2.4}_{-2.0}(syst.)$$
 mb

•
$$\sigma_{K^-p \to \Lambda \pi^0} = 31.0 \pm 0.5(stat.)^{+1.2}_{-1.2}(syst.)$$
 mb.

KLOE at Daφne e⁺e⁻ collider: φ factory ⇒ Kaon beam of ~120MeV

Drift chamber of KLOE used as active target (90% ⁴He, 10% $C_{A}H_{10}$)

guez.doce@cern.ch

 $m_{\Lambda\pi^0} (MeV/c^2)$ 15

Counts / (10 M

•
$$\sigma_{K^-p\to\Sigma^0\pi^0} = 42.8 \pm 1.5(stat.)^{+2.4}_{-2.0}(syst.)$$
 mb
• $\sigma_{K^-p\to\Lambda\pi^0} = 31.0 \pm 0.5(stat.)^{+1.2}_{-1.2}(syst.)$ mb.

New AMADEUS data arXiv:2210.10342 [nucl-ex].

A. Feijoo, D. Gazda, V. Magas, A. Ramos, Symmetry 13 (2021) 8, 1434

Counts / (10 M

400

300

200

100

1400

1380

1420

• $\sigma_{K^-p \to \Sigma^0 \pi^0} = 42.8 \pm 1.5(stat.)^{+2.4}_{-2.0}(syst.)$ mb • $\sigma_{K^-p \to \Lambda \pi^0} = 31.0 \pm 0.5(stat.)^{+1.2}_{-1.2}(syst.)$ mb.

Availal corperimental data

antikaonic hydrogen: SIDDHARTA

shift(ϵ), width(Γ) with respect to e.m. value caused by attractive/repulsive strong interaction and the presence of inelastic channels Measurement of the shift(ϵ) and width(Γ) induced by the strong interaction in the lowest level atomic transition.

antikaonic hydrogen: SIDDHARTA

shift(ϵ), width(Γ) with respect to e.m. value caused by attractive/repulsive strong interaction and the presence of inelastic channels Measurement of the shift(ϵ) and width(Γ) induced by the strong interaction in the lowest level atomic transition.

SIDDHARTA Coll., PLB 704 (2011) 113 $\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$

Translated via Desser-type Formula into a **K**⁻**p** scattering length that is an average of the KbarN scattering lengths for I=0 and I=1

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_p (1 - 2\alpha \mu_c (\ln \alpha - 1)a_p)$$
$$a_{K^- p} = \frac{a_0 (I = 0) + a_1 (I = 1)}{2}$$

AntiKaonic-deuterium scattering lengths more sensitive to the I=1 channel

$$a_{K^{-}d} = \frac{1}{2} \frac{m_N + m_K}{m_N + \frac{m_K}{2}} (3a_1 + a_0) + C$$

Deser-type relation for antikaonic deuterium

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_p \left(1 - 2\alpha \mu_c (\ln \alpha - 1)a_p\right)$$

AntiKaonic-deuterium scattering lengths more sensitive to the I=1 channel

SIDDHARTA-2 measurement is a challenging one:

- Yield of antiKaonic deuterium smaller than antiKaonic hydrogen
- Width of the signal higher than in hydrogen

The interpretation of the SIDDHARTA-2 results will be challenging as well:

- Deser type formula with model dependence
- Recoil corrections to the multiple scattering
- Requires full three-body calculations

<u>SIDDHARTA-2</u> with new experimental setup

 \rightarrow New (and more! 384) SDD's: timing resolution 450 ns @ -140 °C, thickness 450 μ m, area 0.64 cm² \rightarrow New Target

SIDDHARTA-2 with new experimental setup

 \rightarrow New (and more! 384) SDD's: timing resolution 450 ns @ -140 °C, thickness 450 μ m, area 0.64 cm²

- \rightarrow New Target
- \rightarrow New setup configuration closer to IR
- \rightarrow New Veto systems
- ⇒ Full setup ready, deuterium data taking started in june!

800 pb⁻¹ to be acquired by 2024 \Rightarrow Expected <u>precision</u> better than SIDDHARTA measurement of antiKaon-hydrogen

2350

25

Positron Max 977

Daphne collisions today July 3rd 2023

SIDDHARTA-2 antikaonic atoms results

AntiKaonic ⁴He 3d->2p *Lα* measurement SIDDHARTA Coll. 2022 J. Phys. G: Nucl. Part. Phys. 49 055106

Yield of antiKaonic ⁴He yield at 0.75% liquid helium density SIDDHARTA Coll., Nuclear Physics A 1029 (2023) 122567

← Measurements of high-n transitions in intermediate mass antikaonic atoms SIDDHARTA Coll., Eur. Phys. J. A 59, 56 (2023)

In the pipeline \Rightarrow First measurement of antiKaonic-Neon AND M-type transitions on antiK-⁴He

<u>J. Obertova talk Wednesday</u> Microscopic model for multincleonic K⁻ absorptions applied in calculations of kaonic atoms

eV precision measurements by J-PARC E62

JPARC E62 Coll, Phys. Rev. Lett. 128, 112503 (2022)

eV precision measurements **2p shift and width for kaonic ³He and ⁴He**

- Relevant information for the description p-wave kaonic bound states and 4-body systems
- Precise calculations with the most recent potentials on the horizon (require 3-, 4-body calculations)

⇒ First application of microcalorimeter spectrometer, superconducting transition edge sensor (TES) for antikaonic atoms

Total collection area	23 mm ²
ΔE (FWHM)	5 eV
	@ 6 keV

⇒ Future of hardware for intermediate and high-Z kaonic atoms, also: High-purity germanium detectors, 1mm thick SDD's, others.

Available experimental data

Digression: KbarN at threshold and low momentum

SIDDHARTA: antiKaonic Hydrogen

The overlap of the kaon wavefunction with the nucleon delivers insight into the effects of the strong interaction, competing with Coulomb effects

Digression: KbarN at threshold and low momentum

Deliver different observables ←⇒ scattering lengths can be obtained from both (via Deser-type and Lednický–Lyuboshitz formulae)

K⁻**p** Femtoscopy with ALICE

ALICE coll. Eur.Phys.J.C 83 (2023) 4, 340 ALICE coll. Phys. Rev. Lett. 124, 092301 (2020)

Strong interaction: Kyoto model K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201 <u>K⁻p femtoscopy</u>: most precise test of the interaction model at small relative momentum

⇒ Test of Kyoto model anchored to SIDDHARTA result

K⁻**p** Femtoscopy with ALICE

ALICE coll. Eur.Phys.J.C 83 (2023) 4, 340 ALICE coll. Phys. Rev. Lett. 124, 092301 (2020)

Strong interaction: Kyoto model K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201

<u>K⁻p femtoscopy</u>: most precise test of the interaction model at small relative momentum

⇒ Test of Kyoto model anchored to SIDDHARTA result

<u>Small systems:</u> pp collisions r~1fm, p-Pb, peripheral p-Pb r~1.5fm <u>Effects of coupled channels</u> enhanced by small source

Y. Kamiya et al., Phys. Rev. Lett. 124, 132501 (2020)

 $\omega_i = \omega_i^{\text{prod}}$

K⁻p Femtoscopy with ALICE

Correlation function with coupled channels:

K⁻**p** Femtoscopy with ALICE

ALICE coll. Eur.Phys.J.C 83 (2023) 4, 340

Correlation function with coupled channels:

$$C_{\mathrm{K}^{-}\mathrm{p}}(k^{*}) = \int d^{3}r^{*}S_{\mathrm{K}^{-}\mathrm{p}}(r^{*})|\psi_{\mathrm{K}^{-}\mathrm{p}}(k^{*},r^{*})|^{2} + \sum_{j} \omega_{j} \int d^{3}r^{*}S_{j}(r^{*})|\psi_{j}(k^{*},r^{*})|^{2}$$

 ω_j^{prod} = production yields (thermal model) + production p_T spectrum (blast-wave) + pair kinematics

 \Rightarrow Quantitative test of coupled channels in the theory

K⁻**p** Femtoscopy with ALICE

ALICE coll. Eur. Phys. J.C 83 (2023) 4, 340

Correlation function with coupled channels:

$$C_{\mathrm{K}^{-}\mathrm{p}}(k^{*}) = \int d^{3}r^{*}S_{\mathrm{K}^{-}\mathrm{p}}(r^{*})|\psi_{\mathrm{K}^{-}\mathrm{p}}(k^{*},r^{*})|^{2} + \sum_{j} \omega_{j} \int d^{3}r^{*}S_{j}(r^{*})|\psi_{j}(k^{*},r^{*})|^{2}$$

$$\omega_{j} = \alpha_{j} \times \omega_{j}^{\mathrm{prod}}$$

$$\omega_{j} = \alpha_{j} \times \omega_{j}^{\mathrm{prod}}$$

 $\omega_j^{\text{prod}} = \text{production yields (thermal model)} + \text{production } p_T \text{spectrum (blast-wave)} + \text{pair kinematics}$

 \Rightarrow Quantitative test of coupled channels in the theory

The model does not reproduce the strength of the antiK⁰-n channel! \Rightarrow

oton.vazquez.doce@cern.ch

K⁻p Femtoscopy with ALICE in Pb-Pb collisions

ALICE Coll., PLB 822 (2021) 136708

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

oton.vazquez.doce@cern.ch

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

W. Resza @ Hadron 2023

Fit to K⁻d correlation function:

Simultaneous fit with 6 free parameters with Lednicky wave function

- Re. K⁺d scatt. length
- Re., Im. K⁻d scatt. length
- r_o x3 centralities

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

W. Resza @ Hadron 2023

Fit to K⁻d correlation function:

Simultaneous fit with 6 free parameters with Lednicky wave function

- Re. K⁺d scatt. length
- Re., Im. K⁻d scatt. length
- r_o x3 centralities

⇒ K⁺d scatt. length well constrained by scattering data and KN interaction See also pp data in <u>L. Serksnyte talk</u>

Available experimental data

Λ(1405) → Σ^οπ^ο data

Some of the "Classic data":

- photo(electro)-production: CLAS CLAS Collaboration, Phys. Rev. C 87, 035206 (2013) (CLAS Collaboration) Phys. Rev. C 88, 045202 (2013))
- pp collisions: ANKE I. Zychor et al., Phys. Lett. B660, 167-171 (2008)
- pp collisions: HADES HADES Collaboration Phys. Rev. C 87, 025201

Consistent with two pole scenario \Rightarrow

M

 K^+

 π

∧(1405) → Σ^oπ^o data

Some of the "Classic data":

- photo(electro)-production: CLAS CLAS Collaboration, Phys. Rev. C 87, 035206 (2013) (CLAS Collaboration) Phys. Rev. C 88, 045202 (2013))
- pp collisions: ANKE I. Zychor et al., Phys. Lett. B660, 167-171 (2008)
- pp collisions: HADES HADES Collaboration Phys. Rev. C 87, 025201

Consistent with two pole scenario \Rightarrow

M

 K^+

1325

1350

1375

1400

1300

New data:

- photo-production: BGOOD = G. Scheluchin et al., Phys. Lett. B833, 137375 (2022)
- J-PARC E31: d(K⁻,n)π reaction
 J-PARC E31 Coll. Phys Lett B 837 137687 (2023)
 (Preliminary) GlueX photoproduction
 arXiv:2209.06230v1 [nucl-ex]

1425

1450

Pole position of $\Lambda(1405)$ measured in d(K⁻,n) π reactions

Pole position of $\Lambda(1405)$ measured in d(K⁻,n) π reactions

J-PARC E31 Coll. Phys Lett B 837 137687 (2023)

 \Rightarrow Higher pole ~1420 MeV well constrained Lower pole: large differences in predictions.

⇒ Higher pole ~1420 MeV well constrained Lower pole: large differences in predictions.

<u>Proposed</u>: Fusion reaction through triangle singularity sensible also to the lower pole contribution to the scattering

E. Oset et al., EPJ WoC 271, 07006 (2022)

$K^- + d \rightarrow \Sigma p$ reaction

Available experimental data

J-PARC E15

In-flight ³He(K⁻,n)∧p reaction @ 1.0 GeV/c

 $B_{K} = 42 \pm 3(\text{stat.})^{+3}_{-4}(\text{syst.}) \text{ MeV}$ $\Gamma_{K} = 100 \pm 7(\text{stat.})^{+19}_{-9}(\text{syst.}) \text{ MeV}$ We observed a signal of $\bar{K}NN^{(I_{z}=+1/2)} \rightarrow \Lambda p$

J-PARC E15 Coll. Phys. Rev. C 102, 044002 (2020)

E15 data interpretation

Structure in the in-flight 3 He(K⁻, Λ p)n reaction well reproduced by the assumption that a ppK⁻bound state is formed <u>T. Sekihara, E. Oset, A. Ramos PTEP 2016, 12, 123D03</u>

51

oton.vazquez.doce@cern.ch

Systematic studies of kaonic nuclear states

Extended J-PARC program for kaonic nuclei studies to be realized

... in the meantime, new results on the pipeline \Rightarrow

3-Body femtoscopy by ALICE $C_{3}(Q_{3})$ 6 ALICE pp $\sqrt{s} = 13 \text{ TeV}$ High Mult. (0-0.17% INEL > 0) p_1 4 • (p-p-K⁻) ⊕ (p̄-p̄-K⁺) (p-p)-K⁻ + 2× p-(p-K⁻) - 2 p_2 2 p_3 $Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}$ 0.4 0.5 0.6 0.1 0.2 0.3 0.7 0.8 Q_3 (GeV/c)

ALICE Coll., arXiv:2303.13448 [nucl-ex], submitted to EPJA

ALICE Coll., arXiv:2303.13448 [nucl-ex], submitted to EPJA

The effect of the **2-body correlations** are also experimentally determined ⇒ can be "**removed**" obtaining the three-particle cumulant. R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962)

ppK⁻ cumulant

Explored Q₃ region overlaps with the relevant momentum region for the K⁻pp system

more in <u>L. Serksnyte talk</u>

oton.vazquez.doce@cern.ch

Outlook: Everything everywhere all at once

New facilities (K-Long@ J-Lab), apparati (extensive J-PARC hadron physics plan) in the near future

Currently collecting new data: e.g. SIDDHARTA-2 running, ALICE run 3 with more than x500 in stats.

 Data will arrive from everywhere (below and above threshold!)
 ⇒ boost similar to the precise measurement of antiKaonic hydrogen is expected

...still on the search for a <u>description of the KbarN interaction</u> that can accommodate all the data from above to below threshold and predict how kaons behave in nuclear matter in a reliable way

you really need to eat ALL the cookies!