HADES Overview

Recent results from the measurement heavy-ion and elementary collisions in the few GeV energy regime

Simon Spies for the HADES Collaboration

The HADES Physics Program

Heavy-Ion Collisions

- Three most recent beamtimes:
 - Ar+KCl @ 1.76A GeV (2005)
 - Au+Au @ 1.23A GeV (2012)
 - > Ag+Ag @ 1.58 / 1.23A GeV (2019)
- Properties of nuclear matter at highest baryochemical potential / nuclear density
- Event-by-event correlations and fluctuations
- Strangeness production close to or below the free NN threshold energy
- Di-Lepton signals from various sources

Elementary Collisions

- Three most recent beamtimes:
 - > p+Nb @ 3.5 GeV (2008)
 - \rightarrow $\pi+W/\pi+C/\pi+PE @ 1.7 GeV (2014)$
 - > p+p @ 4.5 GeV (2022)
- Electromagnetic structure of Baryons and Hyperons
- Reference measurements to separate in-medium effects in heavy-ion collisions
- (Rare) electromagnetic hadron decays
- Di-Lepton signals from various sources

Nuclear Collisions at SIS18/HADES Energies

 Similar conditions as expected in merging neutron stars (Nature Physics 15, 1040–1045 (2019), J. Phys.: Conf. Ser. 878 012031, Phys. Rev. Lett. 122, 061101)

- Nucleons essentially stopped in collision zone
 - ► Baryon dominated fireball N(B) ≈ 10 N(π)
- About 50% of protons clustered in light nuclei

Rare Probes at SIS18/HADES Energies

- Strangeness production close to or below free NN threshold energy
- Steep excitation function, sensitive to medium effects

The HADES Experiment (Heavy-Ion Setup)

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- Time of flight walls
 RPC and TOF
- RICH and ECAL for e⁺e⁻ and photon identification
- Forward hodoscope (FW) for spectators detection

Almost full azimuthal angle and polar angles between 18° and 85° covered

Electromagnetic Probes

Reconstruction and Analysis of Virtual and Real Photons

Dilepton Reconstruction Performance

- Significantly improved lepton identification and double-ring detection by RICH upgrade
 - Strong suppression of lepton pairs from γ conversion

- Significant statistics up to high invariant mass
 ≈ 1000 MeV/c²
- $\omega(782)$ and $\phi(1020)$ signals clearly visible

Dilepton Spectra and Flow from Ag+Ag

- Up to now no (elementary) reference measurement for Ag+Ag data available → Using simulations
- v_2 becomes 0 at $M_{ee} > 120 \,\text{MeV} \rightarrow \text{Dileptons}$ are penetrating probes

Dilepton Excess Radiation from Au+Au

 Excess Radiation in heavy-ion reactions properly described by Coarse Graining approach – VDM justified!

Collective Phenomena

Flow, Correlations, Fluctuations of (abundant) particles

Flow (Au+Au)

- High precision measurement of Proton, Deuteron and Triton flow coefficients up to v₄
 Eur. Phys. J. A 59 (2023) 4, 80
- Wide ranges in rapidity and transverse momentum covered
- Important input to model calculations to constrain of EoS of compressed baryonic matter
- Ag+Ag data under analysis

Eur. Phys. J. A 59 (2023) 4, 80

Charged Pions

- High statistics enable multi-differential analyses (spectra, angular distributions, azimuthal anisotropy, coulumb force, etc.)
- First observation of Pion-v₃ at this energy

Two-Particle Femtoscopy Correlations

- Proton + Proton, Proton + Cluster and Cluster + Cluster Correlation Functions measured down to k*
 of few MeV/c with high precision and low statistic and systematic uncertainties
- Important input to constrain the EoS of dense nuclear matter

Two-Particle Femtoscopy Correlations

- Proton + Λ Correlation Functions measured down to k* of few MeV/c
- Low statistic and systematic uncertainties
- Important input to constrain the EoS of dense nuclear matter
 - Particulary relevant to further understand Hyperon-Nulceon interactions
 - Closely connected to Hypernuclei
- Further studies ongoing

Outlook: Event-by-Event Fluctuations

- Net-Particle Event-by-Event fluctuations sensitive to phase transitions of nuclear matter
- Mass spectrum fitted with individual functions for each particles species
- Application of Identity method to separate particle species
 - ➤ Also applied at ALICE
- First results on Event-by-Event fluctuations from Ag+Ag data expected soon

Strange Hadrons

Reconstruction and Analysis of Hadrons containing Strangeness

Weak Decay Reconstruction

- Large phase space coverage with low statistical errors
- Data points well described by Boltzmann functions
 - \triangleright Extrapolation to 4π

A Polarization / Vorticity

- Measurement of the global spin polarization using selfanalyzing Λ decays
 - Performed multidifferentially in transverse momentum, rapidity and centrality
- Strongest polarization observed at low energies
- Further constraints for the EoS of compressed baryonic matter

Strange Yields vs. (A_{Part})

- Production below (at) free NN-threshold
 - Missing energy provided by the system
- Centrality dependence compatible with universal scaling assumption:

Mult
$$\propto \langle A_{Part} \rangle^{\alpha}$$
 with $\alpha_{Au+Au} = 1.45 \pm 0.06$

- Hierarchy in production thresholds not reflected
- > Suggests scaling of primary ss creation
- Hint for quark percolation
 K. Fukushima, T. Kojo, W. Weise, PRD 102, 096017 (2020)

Strange Yields vs. (A_{Part})

- Production below (at) free NN-threshold
 - Missing energy provided by the system
- Centrality dependence compatible with universal scaling assumption:

Mult
$$\propto \langle A_{Part} \rangle^{\alpha}$$
 with $\alpha_{Au+Au} = 1.45 \pm 0.06$

- Hierarchy in production thresholds not reflected
- > Suggests scaling of primary ss creation
- Hint for quark percolation
 K. Fukushima, T. Kojo, W. Weise, PRD 102, 096017 (2020)
- Ag+Ag: identical slope within errors $\alpha_{Ag+Ag} = 1.47 \pm 0.04$
- Further investigation to reduce systematic uncertainties ongoing

Hypernuclei

Reconstruction and Analysis of Hypernuclei

$^3_{\Lambda}$ H Two-Body Decay: $^3_{\Lambda}$ H \rightarrow $^3_{\Lambda}$ He + π^-

- ${}_{\Lambda}^{3}H$ lifetime measurement contributing to resolving the ${}_{\Lambda}^{3}H$ lifetime puzzle
- Lifetime of $(251 \pm 21_{stat} \pm 30_{sys})$ ps compatible with free Λ lifetime measured
- Further systematic uncertainty analyses ongoing

$^4_{\Lambda}$ H Two-Body Decay: $^4_{\Lambda}$ H \rightarrow $^4_{\Lambda}$ He + π^-

- 4H lifetime measurement contribution to world data
- Lifetime of $(216 \pm 7_{stat} \pm 10_{sys})$ ps compatible with earlier measurements measured
 - \geq 4.85 σ deviation to free Λ lifetime
- Further systematic uncertainty analyses ongoing

Hypernuclear Excitation Functions

Only few measurements available \rightarrow Interesting prospects for upcoming FAIR experiments (e.g. CBM)

The HADES Experiment (p+p Setup)

- iTOF plastic szintillator for event triggering
- Two straw-tube-trackingstations (STS I and II) in forward direction
 - Four layers in two orientations per station
 - Built in collaboration with PANDA
- Forward time-of-flight detector (fRPC)

• Extends the polar coverage to the region between 7° and down to almost 0°

Dilepton Reconstruction Performance

- High statistics in the $\phi(1020)$ invariant mass region and above
- $\omega(782)$ and $\phi(1020)$ signals clearly visible

Hadron Reconstruction Performance

- High statistic signals from Λ and π^0 decays \rightarrow Detailed studies of (rare) hadron properties possible
- NN reference measurements for CBM and STAR Fixed-Target data

27

Summary

- HADES detector is upgraded with FAIR technology (ECAL, RICH, iTOF, STS1,2 and fRPC)
- High statistics in dilepton invariant mass spectrum → observed φ(1020) signal
- Detailed analyses of bulk particles (Protons, Light Nuclei and Pions)
 - \triangleright p+p, p+A, A+A, p+ Λ Femtoscopy
- Universal strangeness scaling holds in Ag+Ag
- High quality analysis of weak decays with an artificial neural network
 - \triangleright 4.85 σ deviation of ${}^4_{\Lambda}H$ lifetime to free Λ
- Data from most recent p+p beamtime

The HADES Collaboration

BACKUP

Hadron Identification with HADES

- Heavy-ion runs:
 - > 2012: Au+Au $\sqrt{s_{NN}}$ = 2.42 GeV 7 billion collected events
 - > 2019: Ag+Ag $\sqrt{s_{NN}}$ = 2.55 and 2.42 GeV 14 billion collected events
- Hadron PID primarily via momentum and velocity
 - Separation of multiplecharged particles via specific energy loss

Lepton Identification with HADES 12

- Upgraded RICH photodetection plane involving future CBM @ FAIR technology
- Good time resolution and increased sensitivity → Allows for time cuts to enhance lepton purity
- Significantly improved lepton identification and double-ring detection → On average 16 hits per ring detected

First measurement of massive γ* emission from N* baryon resonances

• $\pi^- + p \rightarrow n + \pi^- + \pi^+$

HADES, PRC 102 (2020) 2, 02400° HADES, PRC 95 (2017) 065205

4 first entries $(N\rho)$ 4 additional entries

included in PWA (Bonn-Gatchina)to provide partial wave decomposition

•
$$\pi^- + p \rightarrow n + e^- + e^+$$

- > probe baryon resonance nucleon transition
- Dominance of the N*(1520) resonance at $\sqrt{s_{NN}}$ = 1.49 GeV
 - ρ meson as "excitation" of the meson cloud
 - Vector Meson Dominance foundation of the emissivity calculations for QCD matter

Charged Pions

- High statistics allow for multi-differential analyses (spectra, angular distributions, azimuthal anisotropy, coulumb force, etc.)
- First observation of Pion-v₃ at this energy

Protons: Yield and Kinematic Distributions

- Large phase space coverage with small statistical and systematic errors
- Influence of spectator matter clearly visible in peripheral collisions
- Various multi-differential analyses (spectra, angular distributions, azimuthal anisotropy, etc.) possible
- Light Nuclei (d, t, ³He) under analysis

- 0-10%: Nucleons almost stopped
- 10-30%: Participant region contaminated with spectators

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- Long lifetimes → Off-vertex-topology
- Evaluated by an artificial neural network
 TMVA: arXiv:physics/0703039v5 [physics.data-an]

Toolkit for MultiVariate Data Analysis with ROOT

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- Long lifetimes → Off-vertex-topology
- Evaluated by an artificial neural network TMVA: arXiv:physics/0703039v5 [physics.data-an]

Reconstruction and Analysis of Λ Hyperons

- Very significant signal
- Detailed analyses of hyperon production possible

- Lifetime measurement as test-case
- Result of (262 ± 2 ± 3) ps compatible with PDG value

Reconstruction and Analysis of K_S⁰ Mesons

- Very significant signal
- Detailed analyses of strange meson production possible

- Lifetime measurement as test-case
- Result of (92 ± 1 ± 1) ps compatible with PDG value

A Lifetime Measurement

- Test case for measurements of hypernuclei lifetimes
- Efficiency correction very sensitive to momentum distribution of simulated Λs
 - Multi-differential efficiency correction Challenging for rare particles
 - Measured phase-space distribution as simulation input – Distribution must be known
- Obtained lifetime of (262 ± 2 ± 3) ps in good agreement with PDG lifetime

Hypernuclear Properties

The Hypertriton $-\frac{3}{\Lambda}H$

- Mass of \approx 2991 MeV/c²
 - ➤ Binding energy $B(^3_{\Lambda}H) \approx 0.79 \text{ MeV/A}$
- Primarily four mesonic decay channels:

$$\Rightarrow$$
 $^3_{\Lambda}H \Rightarrow ^3He + \pi^-$ (BR $\approx 27\%$)

$$\rightarrow$$
 $^3_{\Lambda}H \rightarrow t + \pi^0$ (BR $\approx 13\%$)

$$\rightarrow$$
 $^3_{\Lambda}H \rightarrow d + p + \pi^- (BR \approx 40\%)$

- \rightarrow $^3_{\Lambda}H \rightarrow d + n + \pi^0 (BR \approx 20\%)$
- Lightest known hypernucleus
- Current World-Average Lifetime: (211 ± 9) ps

The Hyperhydrogen $4 - {}^{4}_{\Lambda}H$

- Mass of $\approx 3923 \text{ MeV/c}^2$
 - ➤ Binding energy $B(^4_{\Lambda}H) \approx 2.63 \text{ MeV/A}$ → ≈ 3.3 $B(^3_{\Lambda}H)$
- Primarily three mesonic decay channels:

$$\rightarrow {}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$$
 (BR $\approx 50\%$)

$$\rightarrow$$
 ⁴ _{Λ} H \rightarrow t + p + π ⁻ (BR \approx 33%)

$$\rightarrow$$
 ⁴ _{Λ} H \rightarrow t + n + π ⁰ (BR \approx 17%)

- Compared to the ${}^{3}_{\Lambda}H$ higher binding energy and BR of the two-body decay channel
- Current World-Average Lifetime: (218 ± 5) ps

41

$^3_{\Lambda}$ H Two-Body Decay: $^3_{\Lambda}$ H \rightarrow $^3_{\Lambda}$ He + π^-

- Significant signal
- Multi-differential analysis of ³H production possible

- First measurement at mid-rapidity at this energy
- Systematic studies ongoing

$^4_{\Lambda}$ H Two-Body Decay: $^4_{\Lambda}$ H \rightarrow 4 He + π^-

- Significant signal
- Multi-differential analysis of ⁴H production possible

- First measurement at mid-rapidity at this energy
- Systematic studies ongoing

Hypernuclear Energy Excitation Functions

Only few measurements available \rightarrow Interesting prospects for upcoming FAIR experiments (e.g. CBM)