

# **Recent results from ALICE** (selection of hypernuclei & correlations)

Chiara Pinto<sup>1</sup> for the ALICE Collaboration

Trieste – 3 July 2023

πл

<sup>1</sup> Technische Universität München



### Particle production mechanism

**Particle interactions** 



### Particle production mechanism

**Particle interactions** 



# $\mathbf{P}$

### Particle production mechanism Statistical models (SHM)

- Hadrons emitted from a system in statistical and chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$
- *T*<sub>chem</sub> ≈ 156 MeV



### **Particle interactions**

chiara.pinto@cern.ch



# P

### Particle production mechanism Statistical models (SHM)

- Hadrons emitted from a system in statistical and chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$
- *T*<sub>chem</sub> ≈ 156 MeV



### **Particle interactions**

### **Coalescence models**

- (Anti)nuclei arise from the overlap of the (anti)nucleons phase-space distributions with the Wigner density of the bound state
- Microscopic description



chiara.pinto@cern.ch



### Particle production mechanism



### **Particle interactions**

- Equation of state
- Neutron stars
- Exotic states (bound states, molecular states, coupled channels, ...)



2





# ALICE <sup>3</sup>H in small collision systems

Small collision systems (as pp) are interesting:

 size of system created in the collision is smaller or equal to that of the nucleus under study



System size (pp, p—Pb): 1–1.5 fm  $r_d$ : 1.96 fm  $r_{3He}$ : 1.76 fm  $r_{^{3}_{AH}(np\Lambda)}$ : 4.9 fm (B<sub>A</sub>= 2.35 MeV)  $r_{^{3}_{AH}(d\Lambda)}$ : 10 fm (B<sub>A</sub> ~ 0.13 MeV)



# $^{3}_{\Lambda}$ H in small collision systems

Small collision systems (as pp) are interesting:

- size of system created in the collision is smaller or equal to that of the nucleus under study
- for small systems model predictions are quite different

 $^{3}_{\Lambda}$ H/ $\Lambda$  ratio provides a powerful tool to investigate nuclear production mechanism





System size (pp, p—Pb): 1–1.5 fm  $r_d$ : 1.96 fm  $r_{3He}$ : 1.76 fm  $r_{^{3}_{\Lambda H} (np\Lambda)}$ : 4.9 fm (B $_{\Lambda}$ = 2.35 MeV)  $r_{^{3}_{\Lambda H} (d\Lambda)}$ : 10 fm (B $_{\Lambda}$  ~ 0.13 MeV)



#### chiara.pinto@cern.ch

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

# $\frac{3}{\Lambda}$ H in small collision systems

Small collision systems (as pp) are interesting:

- size of system created in the collision is smaller or equal to that of the nucleus under study
- for small systems model predictions are quite different
- coalescence is sensitive to the interplay between the size of the collision system and the spatial extension of the nucleus wave function



System size (pp, p—Pb): 1–1.5 fm  $r_d$ : 1.96 fm  $r_{3He}$ : 1.76 fm  $r_{\Lambda H (np\Lambda)}$ : 4.9 fm (B<sub>A</sub>= 2.35 MeV)  $r_{\Lambda H (d\Lambda)}^3$ : 10 fm (B<sub>A</sub> ~ 0.13 MeV)



### $^{3}_{\Lambda}$ H/ $\Lambda$ ratio provides a powerful tool to investigate nuclear production mechanism



#### chiara.pinto@cern.ch

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23



VO trigger, multiplicity estimators
 (Minimum Bias: 0 – 100%, High Multiplicity: 0 – 0.1%)

- pp, p—Pb, Pb—Pb collisions at
   various centre-of-mass energies
- excellent tracking and PID capabilities over a broad momentum range
  - TPC:  $\sigma_{dE/dx} \sim 5.5\%$  for pp  $\sigma_{dE/dx} \sim 7\%$  for Pb—Pb
  - TOF:  $\sigma_{PID} \sim$  70 ps for pp  $\sigma_{PID} \sim$  60 ps for Pb–Pb
- low material budget

→ most suited detector at the LHC for the study of (anti)(hyper)nuclei & hadron-hadron correlations



### **Hypertriton lifetime**

- Most precise measurement
- Compatible with latest ALICE and STAR measurements
- Models predicting a lifetime close to the  $free \Lambda$  one are favoured
- Strong hint that hypertriton is weakly bound, but  $B_{\Lambda}$  is still needed to solve the puzzle

 $\tau = [253 \pm 11 \text{ (stat.)} \pm 6 \text{ (syst.)}] \text{ ps}$ 

≥ 2020 models: assuming B∧ = 70 keV< 2020 models: assuming B∧ = 130 keV</p>



EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

# **Hypertriton binding energy**

• From the mass measurement to  $B_{\Lambda}$ 

 $B_{\Lambda} = M_{\Lambda} + M_{\rm d} - M_{\rm a}_{\Lambda} H$ 

- Weakly bound nature of <sup>3</sup><sub>A</sub>H is confirmed by the latest ALICE measurement
  - $B_{\Lambda}$  compatible with zero
  - in agreement within 1σ with Dalitz and *χ*EFT-based predictions
  - fully consistent with the lifetime measurement according to recent theoretical calculations [1, 2]

 $r_{\Lambda H (np\Lambda)}$ : 4.9 fm ( $B_{\Lambda}$ = 2.35 MeV)  $r_{\Lambda H (d\Lambda)}^{3}$ : ~10 fm ( $B_{\Lambda}$  ~ 0.13 MeV)

[1] Hildenbrand et al., PRC 102 (2020) 6[2] Pérez-Obiol et al., PLB (2020) 811



#### chiara.pinto@cern.ch

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

### **Hypertriton production**



p—Pb: PRL 128 (2022) 25, 252003 Pb—Pb: PLB 754 (2016) 360-372

chiara.pinto@cern.ch

ALICE

#### • Pb—Pb collisions:

- small difference between the predictions from SHM and coalescence
- pp and p—Pb collisions:
  - large separation between production models
  - measurements are in good agreement with 2-body coalescence
  - tension with SHM at low charged-particle multiplicity density
  - configuration with  $V_{\rm C} = 3 dV/dy$  is excluded by more than  $6\sigma$

Coalescence quantitatively describes the  $^{3}_{\Lambda}H$  suppression in small systems

> the nuclear size matters at low charged-particle multiplicity



### **Nuclear interactions**

Femtoscopic measurement of the hadron - hadron interaction in pp collisions
 Access to the strong interaction and short-range dynamics between hadrons (~ 1-2 fm)

D. Mihaylov's talk Mon. 14.30



EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

### $p-\Lambda$ correlations in pp collisions



- Test chiral effective field theories
- Small deviation k\* < 110 MeV of 3.2 sigmas → 2-body interactions are too attractive</li>

D. Mihaylov's talk Mon. 14.30

PLB 833 (2022) 137272

### $p-\Lambda$ correlations in pp collisions



- Test chiral effective field theories
- Small deviation k\* < 110 MeV of 3.2 sigmas → 2-body interactions are too attractive</li>
- Based on our knowledge of hypertriton binding energy the 3-body interaction could be less repulsive than expected



### $p-\Lambda$ correlations in pp collisions



- Test chiral effective field theories
- Small deviation k\* < 110 MeV of 3.2 sigmas → 2-body interactions are too attractive</li>
- Based on our knowledge of hypertriton binding energy the 3-body interaction could be less repulsive than expected



chiara.pinto@cern.ch



 $c_3$  ( $Q_3$ ) allows to isolate effects associated with the genuine three-body interaction

- p-p- $\Lambda$  cumulants : consistent with null-hypothesis
  - No sign of a repulsion!
- Conclusions
  - Poses interesting questions for the equation of state
  - Need of more statistics → ALICE Run3 dedicated trigger!

L. Serksnyte's talk Wed. 15.00

30  $c_3(Q_3)$  $p-p-\Lambda$  cumulant 25 20 ALICE pp  $\sqrt{s} = 13 \text{ TeV}$ 15 High Mult. (0-0.17% INEL) 10  $n\sigma = 0.8 \quad Q_3 < 0.4$ 5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 Q<sub>3</sub> (GeV/*c*)

Kubo, J. Phys. Soc. Jpn. 177 (1962) arXiv:2206.03344

chiara.pinto@cern.ch

### p-d correlations in pp collisions



- Data compared with models that describe strong-interaction treating d as a point-like particle
- Models very different from the measurement at low k\*
  - the composite nature of d cannot be neglected
  - Short-range interaction must be treated properly

Sensitivity to the dynamics of the three-body p-(p-n) system

Lednicky et al., Phys. Part. Nuclei 40, 307–352 (2009)

### **p-d correlations in pp collisions**



3-body calculations done by PISA theory group: M. Viviani, A. Kievsky and L. Marcucci

- $\rightarrow$  Model calculation qualitatively reproduces the data
- $\rightarrow$  The p-d correlation is affected by two + three-body p-p-n interactions!
- $\rightarrow$  Data sensitive to the higher order partial waves

L. Serksnyte's talk Wed. 15.00

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

13

### p-d correlations in pp collisions



- $\rightarrow$  The p-d correlation is affected by two + three-body p-p-n interactions!
- $\rightarrow$  Data sensitive to the higher order partial waves

chiara.pinto@cern.ch

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

 $\rightarrow \Lambda$  instead of p  $\begin{pmatrix} 3 \\ \Lambda \end{pmatrix}$ 

→ ALICE Run3



• K<sup>-</sup>p correlations measured by ALICE in different colliding systems [1]

 $\rightarrow$  Improve understanding on  $\Lambda(1405)$  molecular state [2]



[1] PRL 124 (2020) 9, 092301, PLB 822 (2021), 136708, EPJC 83 (2023), 4, 340
[2] M. Mai EPJ.ST 230 (2021), 6, 1593-1607

O. Vazquez Doce's talk Mon. 16.30



 K<sup>-</sup>p correlations measured by ALICE in different colliding systems [1]

 $\rightarrow$  Improve understanding on  $\Lambda(1405)$  molecular state [2]

- Cusp structure at  $k^* \sim 59 \text{ MeV}/c$  is observed  $\rightarrow$  due to opening of  $\overline{\mathrm{K}}{}^{0}$ n channel
- Studied also as a function of source sizes (in all available collision systems)



[1] PRL 124 (2020) 9, 092301, PLB 822 (2021), 136708, EPJC 83 (2023), 4, 340 [2] M. Mai EPJ.ST 230 (2021), 6, 1593-1607



• K<sup>-</sup>p correlations measured by ALICE in different colliding systems [1]

 $\rightarrow$  Improve understanding on  $\Lambda(1405)$  molecular state [2]

Similar scenario in ΛK<sup>−</sup> interaction with Ξ(1620) state?
 → Shed light on the nature of Ξ(1620), observed by Belle in Ξ<sup>−</sup> π<sup>+</sup> decay [3]



[1] PRL 124 (2020) 9, 092301, PLB 822 (2021), 136708, EPJC 83 (2023), 4, 340
[2] M. Mai EPJ.ST 230 (2021), 6, 1593-1607
[3] Belle coll. PRL 122 (2019), 7, 07250

D. Mihaylov's talk Mon. 14.30



• K<sup>-</sup>p correlations measured by ALICE in different colliding systems [1]

 $\rightarrow$  Improve understanding on  $\Lambda(1405)$  molecular state [2]

- Similar scenario in ΛK<sup>−</sup> interaction with Ξ(1620) state?
   → Shed light on the nature of Ξ(1620), observed by Belle in Ξ<sup>−</sup> π<sup>+</sup> decay [3]
- Invariant mass from same and mixed event distributions used to build the correlation
  - E(1620) just above the threshold
    - → First experimental evidence of decay into  $\Lambda K^-$
  - Mass in agreement with Belle

 $M_{\Xi(1620)} = 1618.49^{\pm 0.28(stat)}_{\pm 0.21(syst)} \text{ MeV/}c^2$ 

PRL 124 (2020) 9, 092301, PLB 822 (2021), 136708, EPJC 83 (2023), 4, 340
 M. Mai EPJ.ST 230 (2021), 6, 1593-1607
 Belle coll. PRL 122 (2019), 7, 07250





 First measurement of the genuine correlation between protons and D<sup>-</sup> mesons

 $\rightarrow$  Important input in studies and searches for charm nuclear states [1]

- Comparison with available models
  - $\rightarrow$  Indication of an attractive interaction
  - ightarrow Compatible also with the formation of bound state

TABLE I. Scattering parameters of the different theoretical models for the ND interaction [22–25] and degree of consistency with the experimental data computed in the range  $k^* < 200 \text{ MeV}/c$ .

| Model                                                       | $f_0(I = 0)$ | $f_0(I = 1)$ | $n_{\sigma}$ |
|-------------------------------------------------------------|--------------|--------------|--------------|
| Coulomb                                                     |              |              | (1.1–1.5)    |
| Haidenbauer <i>et al.</i> [22] $(g_{\sigma}^2/4\pi = 2.25)$ | 0.67         | 0.04         | (0.8 - 1.3)  |
| Hofmann and Lutz [23]                                       | -0.16        | -0.26        | (1.3–1.6)    |
| Yamaguchi et al. [25]                                       | -4.38        | -0.07        | (0.6 - 1.1)  |
| Fontoura et al. [24]                                        | 0.16         | -0.25        | (1.1–1.5)    |

 New results on Dπ and DK correlations measured by ALICE

( $\rightarrow$  future will open way for T<sub>cc</sub> measurements)





[1] A. Hosaka et al. Prog. Part. Nucl. Phys. 96 (2017), 6, 062C01

### 18

#### chiara.pinto@cern.ch



### Summary

- $^{3}_{\Lambda}$ H measurements in small collision systems
  - powerful tool to investigate nuclear production mechanism
  - powerful probe for investigating the nucleon Λ interaction
- ${}^{3}_{\Lambda}$ H lifetime and  $B_{\Lambda}$  measurements
  - weakly bound state, compatible with calculations that assume a radius R~10 fm
  - from <sup>3</sup><sub>Λ</sub>H/Λ concrete possibility to distinguish with high significance between the two nucleosynthesis mechanisms: hint for coalescence
- N-Λ correlations
  - p- $\Lambda$ , p-p- $\Lambda \rightarrow$  interplay between 2-body and 3-body interactions is crucial
- p-d correlations
  - 2-body interactions insufficient to describe C (k\*)
  - 3-body calculations from Pisa group qualitatively describe the data
  - paves the way for measurements of correlations among hypertriton constituents (dΛ)
- Many more opportunities to be explored with femtoscopy in Run3!



### **Correlations for a charming future**

- Exotic charm states as  $T_{CC}^+$  or  $\chi_{c1}(3872)$  investigated at LHCb and CMS
- Investigate its nature with ALICE 3 in Run 5 and Run 6 via DD\* and DD̄\* correlations → Complementarity between spectroscopy and femtoscopy





Interplay between source size and scattering length
 → Size-dependent modification on the C (k\*) and insights
 into the nature of T<sup>+</sup><sub>cc</sub>



chiara.pinto@cern.ch





Role of partial waves to the final  $C(k^*)$ 









Contribution of the 3-body interactions over the 2-body ones, in a 3-body system

2-body interactions in a 3-body system!

arXiv:2306.02478



- Several peak structures in the measured correlation
- Invariant mass from same and mixed event distributions used to build the correlation
- $\circ$   $\Lambda \mathsf{K}^{-} \oplus \overline{\Lambda} \mathsf{K}^{+}$ 1.5 Ξ(1620) just above the threshold  $\rightarrow$  First experimental evidence of decay into  $\Lambda K^-$ 1.4H  $M_{\Lambda - K^- \oplus \overline{\Lambda} - K^+} (MeV/c^2)$ 1.3 Ξ(1620) <u>×1</u>0<sup>3</sup> 1650 1700 1750 1800 1850 1900 35 **Arbitrary Units** 1.2 30 ALICE Preliminary pp  $\sqrt{s} = 13$  TeV Ξ(1690) High Mult. (0-0.17% INEL > 0)25 1.1 E(1820)  $^{\circ} \circ \Lambda - \mathsf{K}^{-} \oplus \overline{\Lambda} - \mathsf{K}^{+}$ 00000<mark>0</mark>0, 20 <sup>ക്ക</sup>ൺക്കാറ്റെ പ്രംപ്പം പ Ξ(1820): 15 E Ω: 1672.2 MeV/c<sup>2</sup> 1819.6 MeV/c<sup>2</sup> 50 100 150 200 250 300 350 400 10 6 Ξ(1620): Ξ(1690): *k*\* (MeV/*c*) <sup>1</sup>1618.5 MeV/*c*<sup>2</sup> 1692.4 MeV/c<sup>2</sup> 5 ALI-PREL-542885 2  $n_{\sigma}$ 0 0 <sup>°00°000</sup>0000°0°0°<sup>°0°°</sup> -2 -5 50 250 300 350 500 0 100 150 200 400 450 -4 0 50 100 150 200 250 300 350 400 *k*\* (MeV/*c*)

C(k\*)

1.6⊢

ALI-PREL-542898

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

*k*\* (MeV/*c*)

ALICE Preliminary pp  $\sqrt{s} = 13 \text{ TeV}$ 

High Mult. (0-0.17% INEL > 0)

### $\Lambda$ -K<sup>-</sup> correlation in pp collisions



Ξ(1620) properties and scattering parameters
 → Mass in agreement with Belle[3]

 $M_{\Xi(1620)} = 1618.49^{\pm 0.28(stat)}_{\pm 0.21(syst)}$ 

 $\rightarrow$  Indication of a large coupling of E(1620) to  $\Lambda K^-$ 

 $\rightarrow$  Non-resonant scattering parameters in agreement with ALICE Pb-Pb results[4]

 High-precision data to constrain effective chiral theories and to understand the ±(1620) nature[5,6]

R. Lednicky, V. Lyuboshits SJNP 35 (1982)
 F. Giacosa et al. EPJA 57 (2021), 12, 336
 Belle coll. PRL 122 (2019), 7, 07250

chiara.pinto@cern.ch

ALICE

[4]ALICE coll. PRC 103 (2021) ), 5, 055201
[5] A. Ramos et al. PRL 89 (2002), 252001
[6] A. Feijoo et al. PLB 841 (2023), 137927



# Three-body femtoscopy

Extending femtoscopy to three-particle correlations: p-p-p and p-p- $\Lambda$ New way to study interaction in hadron-triplets



How to interpret the results? Interplay between 2-body and 3-body forces

arXiv:2206.03344



Wed. 15.00

 $c_3$  ( $Q_3$ ) allows to isolate effects associated with the genuine three-body interaction

- p-p-p and p-p-p cumulants : significant deviation from zero •
  - Hint of a genuine three-body effect
- Possible interpretations ٠
  - Pauli blocking at three-particle level
  - Three-body strong interaction ٠



Kubo, J. Phys. Soc. Jpn. 177 (1962) arXiv:2206.03344

chiara.pinto@cern.ch



- Hadrons emitted from a system in statistical and chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$

 $\Rightarrow$  Nuclei (large m): large sensitivity to  $T_{chem}$ 

- Light nuclei are produced during phase transition (as other hadrons)
- Typical binding energy of nuclei  $\sim$  few MeV ( $E_B \sim 2$  MeV for d)

### ⇒ how can they survive the hadronic phase environment?



Andronic et al., Nature 561, 321–330 (2018)



39



- If (anti)nucleons are close in phase space (Δ*p* < *p*<sub>0</sub>) and match the spin state, they can form a (anti)nucleus
- Coalescence parameter  $B_A$  is the key observable

$$B_A(p_T^p) = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left/ \left( E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^A \right|_{p_T^p = p_T^A/A}$$

• Experimental observable tightly connected to the coalescence probability Larger  $B_A \Leftrightarrow$  Larger coalescence probability





- If (anti)nucleons are close in phase space (Δ*p* < *p*<sub>0</sub>) and match the spin state, they can form a (anti)nucleus
- Coalescence parameter  $B_A$  is the key observable

$$B_A(p_T^p) = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left/ \left( E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^A \right|_{p_T^p = p_T^A/A}$$

<sup>1</sup>PRC 99 (2019) 024001 <sup>2</sup>PRL 123 (2019) 112002

- Experimental observable tightly connected to the coalescence probability Larger  $B_A \iff$  Larger coalescence probability
- Coalescence probability depends on the system size



#### Small distance in space

(Only momentum correlations matter)

 $\Leftrightarrow$  large  $B_{\mathbb{A}}$ 



- $p \rightarrow p$  $n \rightarrow n$
- If (anti)nucleons are close in phase space (Δ*p* < *p*<sub>0</sub>) and match the spin state, they can form a (anti)nucleus
- Coalescence parameter  $B_A$  is the key observable

$$B_A(p_T^p) = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left/ \left( E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^A \right|_{p_T^p = p_T^A/A}$$

<sup>1</sup>PRC 99 (2019) 024001 <sup>2</sup>PRL 123 (2019) 112002 <sup>3</sup>PRC 96 (2017) 064613

- Experimental observable tightly connected to the coalescence probability Larger  $B_A \iff$  Larger coalescence probability
- Coalescence probability depends on the system size



#### Small distance in space

(Only momentum correlations matter)

 $\Leftrightarrow$  large  $B_A$ 



Pb—Pb<sup>3</sup>: r<sub>0</sub> = 3–6 fm

Large distance in space (Both momentum and space correlations matter)

 $\Leftrightarrow$  small  $B_A$ 

EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

Butler et al., Phys. Rev. 129 (1963) 836

### Light (anti)nuclei in small systems

#### ALICE JHEP 01 (2022) 106



#### HM pp @ 13 TeV

 Focus on the HM data sample → narrow multiplicity interval covered

#### chiara.pinto@cern.ch

### Light (anti)nuclei in small systems

### ALICE JHEP 01 (2022) 106



EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23



 $B_A$  measurements sensitive to the nuclear wave function

• HM data sample also used for the precise measurement of the source radii



ent of the source radii  

$$emission \\ source size \\ \downarrow \\ B_2(p_T) \approx \frac{3}{2m} \int d^3q D(q) e^{-R^2(p_T) q^2} \\ D(q) = \int d^3r |\phi_d(r)|^2 e^{-iq \cdot r}$$

*deuteron wave function* (*size d* = 3.2 fm)

HM pp @ 13 TeV

Different wave functions are tested:

- Hulthen: favoured by low-energy scattering experiments
- Gaussian: best description of currently available ALICE data

Blum, Takimoto, PRC 99 (2019) 044913 Scheibl, Heinz, PRC 59 (1999) 1585-1602 Kachelrieß et al., EPJA 1 (2020) 4

- Production in small collision systems can also be explored using the underlying event (UE) activity
- Coalescence mechanism can be tested comparing the deuteron production in jets, where nucleons are already closer, with that in the underlying event
- Highest  $p_T$  particle ( $p_T^{\text{lead}} > 5 \text{ GeV}/c$ ) used as jet proxy
- 3 regions in the transverse plane wrt leading track:
  - Toward: |Δφ| < 60°</p>
  - Transverse: 60° < |Δφ| < 120°</p>
  - Away: |Δφ| > 120°

Martin et al., EPJC (2016) 76: 299



chiara.pinto@cern.ch



ALI-PREL-506115

chiara.pinto@cern.ch

- Deuteron production from events with a jet:  $p_{T}^{\text{lead}} > 5 \text{ GeV}/c$
- Jet: ~10% of total production

 $\rightarrow$  The majority of deuterons is produced in the underlying event



- $B_2$  parameter flat vs  $p_T/A \rightarrow$  in agreement with simple coalescence
- $B_2$  in-jet ~ 15 times larger than  $B_2$ in UE

12

 $\rightarrow$  Enhanced deuteron coalescence probability in jets is observed for the first time!



/ Model

Data /

ALT\_PREL\_50610'

1.5

1.0

0.5

0

0.4

0.6

0.8

1.0

**PYTHIA 8.3** 

4

 $p_{T}/A (\text{GeV}/c)$ 

→ Further developments of models are needed

New!

PYTHIA 8: Skands et al., EPJC 74 (2014) 8, 3024 PYTHIA 8.3: Bierlich et al., arXiv:2203.11601

chiara.pinto@cern.ch

0.4

0.6

0.8

1.0

**PYTHIA 8 + coalescence** 

1.2

1.4

 $p_{T}/A (\text{GeV}/c)$ 

Data / Model

ALI-PREL-506111

1.5

0.5

# (Anti)(hyper)nuclei production



\*See talk by M. Ciacco on Tue. 14/06 \*\*See talk by P. Larionov on Wed. 15/06

- At LHC energies same amount of matter and antimatter is expected  $(\mu_B \sim 0)^*$
- (Anti)(hyper)nuclei measurement studies are crucial
  - microscopic production mechanism
  - input for indirect dark matter searches\*\*
- Production mechanism usually described with two classes of phenomenological models:
  - statistical hadronization
  - coalescence
- Focus on production in small collision systems:
  - deuteron (minimum bias, jets & underlying event)
  - hypertriton (<sup>3</sup><sub>A</sub>H)

### **Nuclei identification**

ALICE Low p region (below 1 GeV/c)  $\rightarrow$  PID via dE/dx measurements in TPC





### SHM predictions for particle yields



Vanilla SHM predicts the yield of hypertriton but underestimates the yield of Lambdas



EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

### SHM predictions for particle yields

gammaS\*-implementation of SHM predicts also the yield of Lambdas, for all systems

This implementation of SHM:

- incorporates the incomplete equilibration of strangeness by introducing the strangeness saturation factor gammaS
- accounts for the multiplicity-dependent chemical freezeout temperature



### Light (anti)nuclei in small systems (I)



 $p_{T}$  spectra fitted with Lévy-Tsallis /  $m_{T}$ -exponential function  $\Rightarrow$  extrapolation to unmeasured regions



### **Comparison with Pythia simulations**

25

1. Pythia 8.3 (including d production via ordinary reactions, with energydependent cross sections parametrized based on data)

• d production in Pythia:

Bierlich et al., arXiv:2203.11601

 $p+n \rightarrow \gamma + d$  $p+p \rightarrow \pi^+ + d$  $p+n \rightarrow \pi^0 + d$  $p+p \rightarrow \pi^+ + \pi^0 + d$  $p+n \rightarrow \pi^0 + \pi^0 + d$  $n+n \rightarrow \pi^- + d$  $p+n \rightarrow \pi^+ + \pi^- + d$  $n+n \rightarrow \pi^- + \pi^0 + d$ 

- 2. Pythia 8 + simple coalescence
- $\Delta p < p_0$

Skands et al., EPJC 74 (2014) 8, 3024





- Light nuclei production seems to depend only on multiplicity → smooth transition across different collision systems and energies
- Coalescence favored in d/p integrated yield ratios
- Results challenge the models for A=3 nuclei

### **Characterization of emission source**

- If the interaction is well known, hadron-hadron correlation can be used to test the emission source
- Assumption: particle emission from a gaussian core source
- Short-lived strongly decaying resonances (cτ ≤ 10 fm) also taken into account: mainly Δ (Σ\*) resonances for protons (Λ)
- Same  $m_{\rm T}$  scaling obtained from both p-p and p- $\Lambda$  correlations





PLB 811 (2020) 135849

#### chiara.pinto@cern.ch

# d production in jets

- Deuteron production from hard processes:  $p_T^{\text{lead}} > 5 \text{ GeV}/c$
- Fraction of deuterons produced in the jet is  $\sim$  8–15%, increasing with increasing  $p_{\rm T}$
- The majority of the deuterons are produced in the underlying event
- → Towards region contains a large contribution from UE



Phys.Lett.B 819 (2021) 136440

#### chiara.pinto@cern.ch



### Jet-like deuteron spectrum



EMMI workshop - Bound states and particle interactions, Trieste – 3/07/23

### Light (anti)nuclei in small systems





- Smooth transition across different collision systems and energies
- Light nuclei production seems to depend only on multiplicity
- Results challenge the models for A=3 nuclei

### Coalescence parameters VS p<sub>T</sub>/A

•  $B_A$  is rather flat in multiplicity classes, but increases at high  $p_T/A$  in the MB class



### Coalescence parameter B<sub>2</sub>



Strong dependence of B<sub>2</sub> on collision system size

Continuous evolution of  $B_2$  with multiplicity

- Smooth transition from small to large system size
- Single underlying production mechanism? Similar conclusions apply also for  $B_3$

Advanced coalescence models taking into account the size of the nucleus and of the emitting source predict similar trend

The evolution with multiplicity is explained as an increase in the source size *R* in coalescence models (e.g. *Scheibl, Heinz PRC 59 (1999) 1585*)

# d production in jets (II)

- Insight on (anti)d production in smaller phase space available in jet fragmentation
- High-p<sub>T</sub> (> 5 GeV/c) trigger particle used as jet proxy
- Measurement of (anti)d yields within  $|\Delta \phi| < 0.7$  rad
  - Uncorrelated contribution subtracted with ZYAM (zero yield at minimum)
- (Anti)d yields is found to be 2.4–4.8 standard deviations above uncorrelated background ( $p_T^d > 1.35 \text{ GeV}/c$ )
- Good agreement with PYTHIA calculation
   + coalescence afterburner



pp @ 13 TeV

arXiv:2011.05898 [nucl-ex]



### **Characterize the UE**

• Plateau region (jet pedestal):  $5 < p_T^{\text{leading}} < 40 \text{ GeV}/c$  • Several intervals of  $R_T$  are selected in order to distinguish between low and high UE activity



## Hypertriton in small systems

• Data samples:

- pp at Vs = 13 TeV and p-Pb at 5.02 TeV collisions collected by ALICE during Run 2
- <sup>3</sup><sub>A</sub>H selection in pp: trigger on high multiplicity events using V0 detectors + topological cuts on triggered events
- <sup>3</sup><sub>A</sub>H selection in p-Pb: 40% most central collisions + BDT Classifier
- Significance >  $4\sigma$  both in pp and p-Pb



# HITCE Hypertriton selection: ML approach

- Boosted Decision Tree (BDT) classifier trained on a dedicated sample to discriminate between signal and background candidates
- BDT output (independent trainings for each bin):
  - Score related to the probability of the candidate to be signal or background
- Selection based on BDT score:
  - maximisation of the expected significance



ALI-SIMUL-316844

36



- $S_3$ : strangeness population factor  $({}^3_{\Lambda}H/{}^3He)/(\Lambda/p)$
- $S_3$  in small systems:
  - same conclusions as for <sup>3</sup><sub>\lambda</sub>H/\lambda but with a lower sensitivity
  - LHC Run 3 will be crucial to finally distinguish between SHM and coalescence and explore the multiplicity dependence of S<sub>3</sub>!



#### arXiv:2107.10627



### **Hypertriton lifetime**

- Most precise measurement
- Compatible with latest ALICE and STAR measurements
- Models predicting a lifetime close to the free Λ one are favoured
- Strong hint that hypertriton is weakly bound, but  $\mathsf{B}_\Lambda$  is still needed to solve the puzzle



≥ 2020 models: assuming B∧ = 70 keV< 2020 models: assuming B∧ = 130 keV</p>

# Hypertriton binding energy

- From the mass measurement to  $B_{\Lambda}$  $B_{\Lambda} = M_{\Lambda} + M_{d} - M_{3_{\Lambda}H}$
- Weakly bound nature of <sup>3</sup><sub>A</sub>H is confirmed by the latest ALICE measurement
  - $B_{\Lambda}$  compatible with zero
  - in agreement within 1σ with Dalitz and χEFT based predictions
  - fully consistent with the lifetime measurement according to recent theoretical calculations\*



ALI-PREL-486370

\* Hildenbrand et al., PRC 102 (2020) 6; Pérez-Obiol et al., PLB (2020) 811



Same signal extraction technique and ctbins used for the lifetime: precise mass measurement needed to obtain  $B_{\Lambda}$ 

- Extremely precise measurement
   0.0016% stat.
- Systematic uncertainty of ~100 keV (0.003%)









### **Particle production mechanism**

Hypertriton P-d 3 body (Ppp pplambda)

Bound states/resonance Lambda-K- -> Xi 1620 [ppk 3 body - oton] Charm-light hadrons -> p D- -> DPION DK ALICE 3 -> Tcc