X-RAY SPECTROSCOPY TO INVESTIGATE THE LASER-CLUSTER INTERACTION

E Lamour, C Prigent, C Ramond, R Reuschl, JP Rozet, M Trassinelli and D Vernhet

Unité mixte de recherche 7588 - CNRS Universités Pierre & Marie Curie et Denis Diderot

'S P

C Deiss, J Burgdörfer

TU-Wien -- Institute for Theoretical Physics, Austria

CEA Saclay: O Gobert, M Perdrix

Characteristics of clusters

Finite systems with variable sizes : $\tilde{N} = 10^3 - 10^6$ at/cl ($\phi \sim 1$ to 30 nm)

Clusters combine advantages of gaseous and solid targets

Observations with rare gas clusters

 $\begin{array}{c} \mbox{production of HCI} \\ \mbox{with } E_{kin} \mbox{ from keV to MeV} \\ \mbox{(Xe^{q < 40+}, Ar^{q < 14+})} \end{array}$

ejection of hot electrons $(E_{kin} \sim keV)$

X-ray emission in the keV range

X_K(Ar) ~ 3.1 keV

Observations that follow the cluster explosion: Information a µs after the laser pulse and the cluster disintegration Direct insight into the early evolution of the nanoplasma

X-ray spectroscopy to test the dynamics

X-ray spectroscopy to test the dynamics

Production of fast electrons: what are the heating mechanisms?

Interplay between electronic & ionic dynamics

Quantitative measurements of

- \checkmark absolute photon emission yields
- \checkmark charge state distributions

as a function of different parameters

✓ I_{peak} , τ , λ , polarization ✓ species, P_0 (size), ρ_m

Development of the first model giving absolute photon yields

 \checkmark based on a mean field Monte – Carlo approach

Prigent, Deiss PRA 78 (2008)

Experimental set-up

Optimisation of the X-ray signal

Simulations: a mean field classical approach

many-particle effects included via Monte Carlo events: the Langevin equation

 \Box probability for fast electrons to produce K-shell vacancy: $P_{K} = \sigma_{K}$

 $P_{K} = \sigma_{K}(E)\rho(t)v(t)\Delta t$

Given fluorescence yield: $N_X = \omega_K N_K$

□ absolute x-ray yields :

Gaussian spatial intensity profile

+ clustering rate η

Scenario of the dynamics of a single cluster

Optical field ionization

 \rightarrow a cold nanoplasma

The electron cloud driven by the laser field

Polarizable sphere

 \rightarrow screening of the laser field inside the cluster

 \rightarrow electric field enhanced on the poles

Outer ionization : electrons leave the cluster

Build-up of a positive charge on the cluster surface

Fukuda et al. PRA 73 (2006); Prigent, Deiss et al PRA 78 (2008)

Scenario of the dynamics of a single cluster

Pulse duration effect on the absolute x-ray yield $N_X \propto P_K (I_{peak}, \tau) \times V_{eff. foc.} (I_{peak}, \tau)$ Ar 4 10⁴ at/cl, $\lambda = 800$ nm, d_m~10¹⁷ cm⁻³ 10⁶ Absolute x-ray yield (3.1 keV) 10⁵ 104 smooth evolution $J_{peak} > 3$ 10³ 570 fs 140 fs⊥ : rapid d 10² 55 fs **10**¹⁴ **10**¹⁵ Laser Intensity (W/cm²). $\checkmark I_{th}$ decreases when increasing the pulse duration \checkmark X-ray yields well reproduced by the $V_{eff. Foc} = f(I_{peak}/I_{th})$. laser

- ✓ Intensity & pulse length dependence well reproduced
- \checkmark Good prediction of the intensity threshold \mathbf{I}_{th}

✓ Discrepancy for long pulse duration ... role of the ion dynamics i.e. cluster expansion

Comparison with the simulations: (2) charge state distribution

Comparison at high laser intensities where <Q> ~ cst

rather good agreement !! Exp. and th. results differ only by one charge state

Comparison with the simulations: (3) Optimal pulse duration

Conclusions on the laser-cluster interaction

□ Absolute x-ray measurements under well controlled conditions

□ Efficient energy coupling for converting photons from eV to keV up to 10^9 hv/ pulse in 4π for Ar_n → energy conversion ~ $10^{-2}\%$

$$N_X \propto P_K (I_{peak}, \tau) \times V_{eff. foc.} (I_{peak}, \tau)$$

□ Mean field classical transport simulations

Heating mechanisms of electrons up to energies in the keV range identified

Strong enhanced electric field at the cluster poles : Combined action of cluster charging & polarization

First simulations giving absolute X-ray yield predictions

Intensity & pulse duration dependences well reproduced Prediction of an optimal pulse duration due competition between single cluster dynamic & number of clusters in $V_{eff, foc.}$ To be done in a near future...

 I_{th} strongly depends on τ : a more precision evolution is needed

Its evolution allows to explain the optimum in the x-ray production

Access to a better definition of the competition between the heating mechanisms and the cluster expansion

Better knowledge on the cluster jet as the atomic density, the clustering rate...

(under progress)

Time dependence of the cluster jet profile for $P_0 = 20$ bars, an opening time of the value of 500 µs and at a distance of 396 mm.

(under progress)

To be done in a near future...

 I_{th} strongly depends on τ : a more precision evolution is needed (under progress)

Better knowledge on the cluster jet as the atomic density, the clustering rate...

(under progress)

Further developments of the simulation for a better ion expansion description

For $\tau = 570$ fs, X-ray yields overestimated

The simulation needs to be tested with other parameters as the cluster size, the laser wavelength P = 17 bar

THANKS